Introduction. Human well-being is mostly related with metabolic processes in the body and therefore nutritional disorders lead to serious health problems of people of all ages. The analysis of daily diet composition devotes special attention to the availability of essential components of nutrition, which deficiency leads to irreversible disturbance of the homeostasis state.

Numerous studies published in recent decades revealed the problem of inadequate intake of dietary fiber in human diet. Deficiency of dietary fiber can lead to the pathological changes in organs and systems of human body.

Dietary fibers play an important physiological role in the human body. For this reason, dietary fibers are considered before other nutrients to ensure a healthy nutrition. Lack of fibers in the diet is associated with gastrointestinal diseases, including constipation, colon cancer, and hemorrhoids; cardiovascular diseases, including hypercholesterolemia, stroke, and ischemic heart; and metabolic diseases, including obesity and diabetes [9].

Many studies have shown that dietary fibers can promote human health and help prevent specific chronic diseases that increase mortality and reduce life expectancy. Numerous healthful effects of the dietary fibers have been documented. These include curative and preventive effects for diseases such as obesity, certain types of cancers, cardiovascular diseases, diabetes, and constipation. Conclusion. Fibers are considered before other nutrients to ensure a healthy nutrition. Research continues to contribute new data on the effect of dietary fiber on the human body.

Keywords: dietary fiber, terminology, classification, essential components of nutrition, physiological effects.
In addition, the authors of the publications reveal the terminology and classification of dietary fibers, represent the characteristics of different types, describe the sources of fibers and the possibility of their incorporation in food formulations. Numerous data presented in scientific publications are often contradictory and therefore systematization of such studies is quite important.

The concept of “dietary fiber”. The term dietary “fiber” was first used in an article by H. Hipsley (1953). Trowell (1978) defined dietary fiber as “the sum of polysaccharides and lignin not digested by the human gastrointestinal tract”. Later Jimenez-Colmenero et al. [22] defined dietary fibers as carbohydrate food components, which are not hydrolyzed by the endogenous enzymes in the small intestine.

Zielinski and Rozema [48] analyzed the three definitions of “dietary fiber”, formulated by the Institute of Medicine, AACC International and Codex Alimentarius Commission. The definition suggested by the Institute of Medicine: Dietary Fiber consists of nondigestible carbohydrates and lignin that are intrinsic and intact in plants [20].

The AACC International [1] suggested definition: Dietary fiber is the edible parts of plants or analogous carbohydrates that are resistant to digestion and absorption in the human small intestine with complete or partial fermentation in the large intestine. Dietary fiber includes polysaccharides, oligosaccharides, lignin, and associated plant substances. Dietary fibers promote beneficial physiological effects including laxation and/or blood cholesterol attenuation, and/or blood glucose attenuation.

The Codex Alimentarius Commission (FAO/WHO 2010) [14] formulated following definition: Dietary fiber means carbohydrate polymers with ten or more monomeric units, which are not hydrolysed by the endogenous enzymes in the small intestine of humans and belong to the following categories: edible carbohydrate polymers naturally occurring in the food as consumed; carbohydrate polymers, which have been obtained from food raw material by physical, enzymatic or chemical means and which have been shown to have a physiological effect of benefit to health as demonstrated by generally accepted scientific evidence to competent authorities; synthetic carbohydrate polymers which have been shown to have a physiological effect of benefit to health as demonstrated by generally accepted scientific evidence to competent authorities.

The authors noted one commonality in these definitions: each mentioned positive physiological effects [48]. This reflected that, in the international scientific community, the importance of dietary fibers in human nutrition was increasingly recognized. More recently, Fuller et al. [17] reported that the definition of dietary fibers is elusive. The authors point to dietary fibers being related to chemical compounds defined by structure, or functional properties, and/or a combination of both structural and functional properties. The various classifications used to describe dietary fibers reflect such a complexity.

Classification of dietary fibers. Different characteristics can be used as a basis for the classification of dietary fibers [29]. The most common classification strategies are described below.

Origin. Dietary fibers can be distinguished based on the type of raw materials from which they originate. For example, they can be obtained from lower plants (algae, fungi), higher plants (cereals, grasses, and wood species) or animals (chitin and collagen) [23]. Distinctions can also be made between traditional (cereals, vegetables, fruits, berries) and non-traditional (like herbs, algae and wood) sources of raw materials [29, 41].

Polymers structure. The classification of dietary fibers according to the structure of polymers is generally done on the basis of homogeneity and heterogeneity. Homogeneous dietary fibers consist of homogeneous high-molecular substances (like cellulose, pectins, arabinose and lignin) while heterogeneous dietary fibers consist of biopolymers of several types (holocellulose, cellulose-lignins, hemicellulose-cellulose-lignin, protein-polysaccharide complexes are examples) [38].

Fiber content. The ratios of fibers to accompanying substances (starches, lipids, proteins, minerals and tannins) is also used to classify dietary fibers. Classifications based on this include food fibers, semi-concentrates of dietary fibers, concentrates of dietary fibers, and isolates of dietary fibers. In food fibers, the dietary fiber content of the feedstock does not exceed 30 %. Byproducts of processing raw materials, fruit squeezes, grasses, and some vegetables often fall within this group. Semi-concentrates of dietary fibers contain 30–60 % of fibers. Concentrates of dietary fibers comprise 60–90 % of fibers. Tomato pomace, grapevine or wheat bran are typically in this group. Finally, isolates of dietary fibers have a dietary fiber content exceeding 90 %. This category includes lignin, cellulose, and other highly purified plant products [37].
Dietary fibers and health. Epidemiological studies have shown a correlation between dietary fiber consumption deficiency and obesity as well as the development of several chronic diseases including colon cancer and cardiovascular disease (WHO / FAO 2003). Dietary fibers are an important part of the daily diet [33]. It is advisable to consume 30–40 g of fibers per day. Half of those fibers should come from the cereal bran and the rest from fruits and vegetables. The differences in fiber consumption recommendations for in different countries tend to follow regional and cultural eating habits, lifestyles and the degree of processing of various food products.

Reports on the benefits of dietary fibers are numerous. For example, Yilmaz [46] noted on the effect of rye bran in inhibiting the growth of mammary and colon tumors in laboratory animals. The author's studies showed a decrease in glucose levels in diabetics, as well as a reduced risk of death from coronary heart disease. Sze et al. [41] showed that fibers reduce the glycemic index. The presence of fibers in the diet was also shown to promote the elimination of heavy metals, toxins, carcinogens, and other substances that are potentially hazardous for humans [25, 43]. An overview of research data regarding the effects of dietary fibers on the body are presented in Table 1.

The high moisture-binding capacity of dietary fibers triggers the feeling of satiety and affects stool bulking, which in turn accelerate gut transit [4, 5, 11]. The time of action of secondary bile acids, therefore, decreases. It follows that fibers help to prevent and treat constipation [11]. The water-holding capacity of dietary fibers is dependent on the structure, the chemical composition and the relative proportions of different types of fibers [4].

Casas et al. [6] conducted a meta-analysis of data on the impact of various nutrients on the development of cardiovascular diseases and noted the important role of dietary fibers in reducing their number. Slavin [39] noted that adequate fiber intake consistently reduces the risk of cardiovascular disease and coronary heart disease by reducing low-density lipoprotein levels.

LeBlanc et al. [27] noted that the risk reduction of the cardiovascular diseases in the consumption of dietary fiber is due to their prebiotic effect and stimulation of growth of *Bifidobacterium* and *Lactobacillus*.

Soluble and insoluble dietary fibers have different effects on the body. Water-insoluble dietary fibers (IDF) affect intestinal regulation, while...
Overview of research data regarding the effects of dietary fibers

<table>
<thead>
<tr>
<th>Condition</th>
<th>Effect</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obesity</td>
<td>In the stomach dietary fibers slow the evacuation of food, create a lasting sensation of satiety. This limits the consumption of calories and promotes weight loss</td>
<td>[3, 7, 11]</td>
</tr>
<tr>
<td>Some types of cancers</td>
<td>Dietary fibers protect against certain types of cancers by reducing the concentration of carcinogenic substances in the body. This is done by accelerating the passage of chime which translates in the reduction of the period of contact of carcinogens with the intestinal mucosa</td>
<td>[13, 20, 24, 27, 36, 37]</td>
</tr>
<tr>
<td>Allergies</td>
<td>Fibers prevent allergies by reducing the endogenous level of histamines and absorb allergens. Dietary fibers, therefore, increase the resistance of the body</td>
<td>[42, 45]</td>
</tr>
<tr>
<td>Atherosclerosis</td>
<td>The development atherosclerosis is slowed by dietary fibers. This is because they absorb cholesterol and lipids and then remove them from the body</td>
<td>[40, 47]</td>
</tr>
<tr>
<td>Diabetes</td>
<td>Water-soluble dietary fibers, by forming colloidal solutions, slow down the absorption of fat, simple carbohydrates thereby they contribute to lowering cholesterol and normalizing blood glucose levels</td>
<td>[5, 35, 46]</td>
</tr>
<tr>
<td>Gastritis</td>
<td>By inhibit the secretory activity of gastric juice, dietary fibers have a stimulating effect on the stomach wall’s reparative processes</td>
<td>[19]</td>
</tr>
<tr>
<td>Gastroesophageal reflux disease</td>
<td>Consumption of fibers reduces the reflux of bile into the stomach by increasing the absorption of bile acids</td>
<td>[33]</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>Fibers has a positive effect on the biomarkers of heart disease, they reduce the level of C-reactive protein, apolipoprotein and blood pressure</td>
<td>[39, 40]</td>
</tr>
<tr>
<td>Irritable bowel syndrome, constipation</td>
<td>Fibers increase the mass of feces along with their liquid content. Dietary fibers also reduce the time of intestinal transit</td>
<td>[5, 19]</td>
</tr>
<tr>
<td>Hepatic encephalopathy</td>
<td>Dietary fibers adsorb ammonia and shorten the transit time of intestinal transit</td>
<td>[22]</td>
</tr>
<tr>
<td>Autoimmune disease</td>
<td>Dietary non-fermentable fiber alters the composition of the gut microbiota and metabolic profile</td>
<td>[4]</td>
</tr>
<tr>
<td>Chronic kidney disease</td>
<td>Dietary fibers reduce indoxyl sulphate and p-cresyl sulphate levels better than peritoneal dialysis and haemodialysis</td>
<td>[7, 44]</td>
</tr>
</tbody>
</table>

Water-soluble dietary fibers (SDF) contribute to lowering cholesterol levels and glucose adsorption in the intestine [24]. Numerous studies have documented the use of dietary fibers for the reduction of blood cholesterol levels and regulation of blood glucose levels. The SDF β-glucan was shown to promote the reduction of blood glucose and blood cholesterol levels [8, 39]. Also, Fukuushima et al. [16] noted that Shiitake fiber influenced the decline of the serum total cholesterol level by enhancement of fecal cholesterol excretion. Due to their high viscosity, the SDF have an effect on glucose and lipid metabolism. IDF assumed not to affect the viscosity of gut contents. It has been found that SDF have better cholesterol-reducing properties than IDF [45]. IDF intake, however, reduces the risk of prostate cancer [12].

Chitosan satisfies the requirements of dietary fiber as it is not digested in the upper gastrointestinal tract, and it provides high viscosity and high water binding capacity in the lower part of the gastrointestinal tract. Chitosan differs from other dietary fibers in that it has the ability to bond chemically with the negatively charged lipids, fats, and bile acids due to its positive ionic charge [7]. Incorporation of chitosan or cellulose in the diet reduced cholesterol intake [23]. Chitin and chitosan exhibit hypolipidemic properties as cholesterol and triglyceride levels were reduced in the blood plasma (serum) and in the liver of rats. Foods containing chitosan could be designed to reduce obesity and cholesterol levels. Chitosan can also contribute to reducing the incidence of colon cancer [23].

Nurdin et al. [35] noted that purified sources of natural dietary fiber, especially pectin, demonstrate a protective effect against colorectal cancer and they are recommended for creating functional foods. Pectin has a positive effect on health due to the ability to form a gel or to thicken a solution. It is known that to have positive effects on dumping syndrome patients, it improves the metabolism of cholesterol and lipids and it prevents and control diabetes. Adam et al. [2] determined that the fermentable fibre pectin effective for increasing satiety and decreasing caloric intake, it promote the weight loss in obesity.
Iwasa et al [21] conducted a study to evaluate if it was possible to use fiber to prevent and treat latent hepatic encephalopathy. The results showed that, during 30 days, a significantly increase in the contents of lactic bacteria does not produce urease, which was accompanied by a reduction in the level of ammonia in the blood. This lead to the reversal of signs of hepatic encephalopathy in 50% of the patients, a significant decrease of endotoxemia.

Consuming enough dietary fibers has undeniable benefits. Including fibers in products has beneficial effects for diseases or conditions such as obesity, certain types of cancers, cardiovascular diseases, diabetes, and constipation. Research on various types of dietary fibers continues to contribute new data on the effect of dietary fiber on the human body.

Conclusions. Although the existing definitions have common elements, nowadays no consensus definition has been given to the concept of dietary fibers. The modern classification system for dietary fibers is wide and diverse and can be based on origin, structure, solubility or physiological effect. Numerous positive physiological effects of the use of dietary fibers have been documented. These include curative and preventive effects for diseases or conditions such as obesity, certain types of cancers, cardiovascular diseases, diabetes, and constipation. Research on various types of dietary fibers continues to contribute new data on the effect of dietary fiber on the human body.

Acknowledgments
The work was supported by Act 211 Government of the Russian Federation, contract № 02.A03.21.0011.

Conflict of Interest: The authors declare that they have no conflict of interest.

References
2. Adam C.L., Gratz S.W., Peinado D.J. et al. Effects of Dietary Fibre (Pectin) and/or Increased Protein (Casein or Pea) on Satiety, Body Weight, Adiposity and Caecal Fermentation in High Fat Diet-Induced Obese Rats. *PLOS ONE*, 2016. DOI: 10.1371/journal.pone.0155871
16. Fukushima M., Ohashi T., Fujikawa Y. et al. Cholesterol-Lowering Effects of Maitake (Grifolafrondosa) Fiber, Shiitake (Lentinusdodes) Fiber, and Enokitake (Flammulinavelutipes) Fiber in Rats. *Experimental Biology and

36. O’Keefe S.J.D. Diet, Microorganisms and Their Metabolites, and Colon Cancer. Nature
Спортивное питание

Received 5 January 2020

УДК 613.2

DOI: 10.14529/hsm200113

ВЛИЯНИЕ ПИЩЕВЫХ ВОЛОКОН НА ЗДОРОВЬЕ ЧЕЛОВЕКА: ОБЗОР

С.П. Меренкова1, О.В. Зинина1, М. Стюарт2, Э.К. Оккусанова3, Н.В. Андрюсова4

1Южно-Уральский государственный университет, г. Челябинск, Россия,
2Лаборатория ядерных исследований, г. Чок-Ривер, Онтарио, Канада,
3Государственный университет имени Шакарима города Семей, г. Семей, Казахстан

Целью данного исследования являлся анализ литературных данных относительно терминологии, классификации и физиологических функций пищевых волокон. Результаты. Приведены данные научных исследований, касающиеся терминологии и классификации пищевых волокон, представлены характеристики различных типов, описаны источники пищевых волокон и их положительные физиологические эффекты. В настоящее время нет единой терминологии для характеристики понятия «пищевые волокна». Авторы указывают
на общую концепцию в определениях: основанием к отнесению к группе пищевых волокон является соответствие химической структуры или функциональных свойств или сочетание как химического строения, так и функциональных свойств. Авторы отметили одну общность в этих определениях: в каждом из них отмечались положительные физиологические эффекты пищевых волокон. Современная система классификации пищевых волокон разнообразна и может быть основана на происхождении, структуре полимеров, растворимости, инообменных свойствах, коррозионном или физиологическом эффекте. Множество исследований доказывают, что пищевые волокна благоприятно влияют на здоровье человека и способствуют предотвращению отдельных хронических заболеваний, которые увеличивают смертность и сокращают продолжительность жизни. В научных публикациях отмечены многочисленные полезные для здоровья человека свойства пищевых волокон. К ним относятся лечебные и профилактические эффекты при таких заболеваниях, как ожирение, некоторые виды онкологических заболеваний, сердечно-сосудистые заболевания, диабет и запоры. Заключение. Пищевые волокна являются незаменимыми питательными веществами, обеспечивающими рациональное питание. Продолжающееся исследование вносит новые данные о влиянии пищевых волокон на организм человека. Ключевые слова: пищевые волокна, терминология, классификация, незаменимые компоненты питания, физиологическое воздействие.

Меренкова Светлана Павловна, кандидат ветеринарных наук, доцент кафедры «Пищевые и биотехнологии», Южно-Уральский государственный университет. 454080, г. Челябинск, пр-кт Ленина, 76. E-mail: merenkovasp@susu.ru, ORCID: 0000-0002-8795-1065.

Зинина Оксана Владимировна, кандидат сельскохозяйственных наук, доцент кафедры «Пищевые и биотехнологии», Южно-Уральский государственный университет. 454080, г. Челябинск, пр-кт Ленина, 76. E-mail: zininav@susu.ru, ORCID: 0000-0003-4817-1645.

Стюарт Мэрилин, доктор PhD, профессор, старший научный сотрудник, лаборатория ядерных исследований, г. Чок-Ривер, Онтарио, Канада. E-mail: marilyne.stuart@cnl.ca, идентификатор автора: 55504161900.

Окуханова Элеонора Курметовна, доктор PhD, доцент кафедры «Технология пищевых продуктов и изделий легкой промышленности» инженерно-технологического факультета, Государственный университет имени Шакарима города Семей. Республика Казахстан, 071412, г. Семей, ул. Гликни, 20а. E-mail: eleonora-okushan@mail.ru, ORCID: 0000-0001-5139-9291.

Андросова Наталья Владимировна, старший преподаватель кафедры «Технология продукции и организации общественного питания», Южно-Уральский государственный университет. 454080, г. Челябинск, пр-кт Ленина, 76. E-mail: androsovanv@susu.ru.

Поступила в редакцию 5 января 2020 г.