ВЫЯВЛЕНИЕ СПОРТИВНЫХ ТАЛАНТОВ: ГЕНЕТИКА И ДВИГАТЕЛЬНЫЕ ТЕСТЫ
Аннотация
Цель. Целью данного исследования было объяснение роли тестирования физической подготовленности и генетического анализа в выявлении спортивных талантов. Материалы и методы. Выборка исследования включала 169 учеников (97 мальчиков, средний возраст – 7,438 года и 72 девочки, средний возраст – 7,227 года), посещающих 3 начальные школы в г. Нитра. Все ученики сдали 9 физических тестов на определение общих физических способностей. За выполнение тестов каждому ученику начислялись очки. Впоследствии были отобраны 30 учеников с наивысшей оценкой, у которых забиралась слюна для генетического анализа в объеме 2 мл (GeneFix Saliva Collectors). Образцы исследовались с использованием прибора HiScan (Illumina Inc., Сан-Диего, США), который позволяет анализировать 400 000 полиморфизмов в гене человека. Значения индивидуальных генетических показателей сравнивались с гистограммой распределения генетических показателей в европейской популяции. Для анализа данных использовали программное обеспечение Genomestudio (Illumina Inc., Сан-Диего, США) и TANAGRA 1.4.50. Результаты. На основе проведенного анализа родителям и тренерам была предоставлена конкретная информация о предрасположенности детей к определенным видам спорта с учетом их типа энергетического обмена, анаэробных возможностей, спортивной мотивации и чувствительности к мышечной боли. Заключение. Результаты генетического анализа и исследования физических способностей детей в возрасте 7–8 лет позволяют предположить, что генетическое тестирование юных спортсменов подходит для определения предрасположенности детей к определенным видам спорта еще до непосредственного проявления физических качеств. Генетические тесты могут дать информацию о типе физической активности (на выносливость или скорость), которая подходит для человека. Результаты фитнес-тестов предоставляют ограниченную информацию о текущем состоянии здоровья ребенка. Генетический анализ может рассматриваться как удобная и практичная альтернатива для спортивной ориентации населения.
Литература
2. Ahmetov I.I., Rogozkin V.A. Genes, Athlete Status and Training – An Overview. Medicine and Sport Science, 2009, vol. 54, pp. 43–71. DOI: 10.1159/000235696
3. Ahmetov I.I., Hakimullina A.M., Lyubaeva E.V. et al. Effect of HIF1A Gene Polymorphism on Human Muscle Performance. Bulletin of Experimental Biology and Medicine, 2008, vol. 146, no. 3, pp. 351–353. DOI: 10.1007/s10517-008-0291-3
4. Auton A., Abecasis G.R., Altshuler D.M. et al. A Global Reference for Human Genetic Variation. Nature, 2015, vol. 526 (7571), pp. 68–74. DOI: 10.1038/nature15393
5. Berndt S.I., Gustafsson S., Mägi R. et al. Genome-Wide Meta-Analysis Identifies 11 New Loci for Anthropometric Traits and Provides Insights into Genetic Architecture. Nature Genetics, 2013, vol. 45, no. 5, pp. 501–512. DOI: 10.1038/ng.2606
6. Bouchard C., Antunes-Correa L.M., Ashley E.A. et al. Personalized Preventive Medicine: Genetics and the Response to Regular Exercise in Preventive Interventions. Progress in Cardiovascular Diseases, 2015, vol. 57, no. 4, pp. 337–346. DOI: 10.1016/j.pcad.2014.08.005
7. Bouchard C., Sarzynski M.A., Rice T.K. et al. Genomic Predictors of the Maximal O2 Uptake Response to Standardized Exercise Training Programs. Journal of Applied Physiology, 2011, vol. 110, no. 5, pp. 1160–1170. DOI: 10.1152/japplphysiol.00973.2010
8. Buxens A., Ruiz J.R., Arteta D. et al. Can We Predict Top-Level Sports Performance in Power vs Endurance Events? A Genetic Approach. Scandinavian Journal of Medicine and Science in Sports, 2011, vol. 21, no. 4, pp. 570–579. DOI: 10.1111/j.1600-0838.2009. 01079.x
9. Chen C., Sun Y., Liang H. et al. A Meta-Analysis of the Association of CKM Gene Rs8111989 Polymorphism with Sport Performance. Biology of Sport, 2017, vol. 34, no. 4, pp. 323–330. DOI: 10.5114/biolsport.2017.69819
10. Döring F., Onur S., Fischer A. et al. A Common Haplotype and the Pro582Ser Polymorphism of the Hypoxia-Inducible Factor-1 (HIF1A) Gene in Elite Endurance Athletes. Journal of Applied Physiology, 2010, vol. 108, pp. 1497–1500. DOI: 10.1152/japplphysiol. 01165.2009
11. Ehrenborg E.W., Krook A. Regulation of Skeletal Muscle Physiology and Metabolism by Peroxisome Proliferator-Activated Receptor. Pharmacological Review, 2009, vol. 61, no. 3, pp. 373–393. DOI: 10.1124/pr.109.001560
12. Felix J.F., Bradfield J.P., Monnereau C. et al. Genome-Wide Association Analysis Identifies Three New Susceptibility Loci for Childhood Body Mass Index. Human Molecular Genetics, 2015, vol. 25, no. 2, pp. 1–52. DOI: 10.1093/hmg/ddv472
13. Ginevičienė V., Jakaitiene A., Prancu-lis A. et al. AMPD1 Rs17602729 Is Associated with Physical Performance of Sprint and Power in Elite Lithuanian Athletes. BMC Genetics, 2014, vol. 15, no. 58. DOI: 10.1186/1471-2156-15-58
14. Graff M., Scott R.A., Justice A.E. et al. Genome-Wide Physical Activity Interactions in Adiposity – A Meta-Analysis of 200,452 Adults. ed. Todd L. Edwards. PLoS Genetics, 2017, vol. 13, no. 4, e1006528. DOI: 10.1371/journal. pgen.1006528
15. Graff M., North K.E., Richardson A.S. et al. BMI Loci and Longitudinal BMI from Adolescence to Young Adulthood in an Ethnically Diverse Cohort. International Journal of Obesity, 2017, vol. 41, no. 5, pp. 759–768. DOI: 10.1038/ijo.2016.233
16. Johnston K., Wattie N., Schorer J., Baker J. Talent Identification in Sport: A Systematic Review. Sports Med, 2018, vol. 48, no. 1, pp. 97–109. DOI: 10.1007/s40279-017-0803-2
17. Karoly H.C., Stevens C.J., Magnan R.E. et al. Genetic Influences on Physiological and Subjective Responses to an Aerobic Exercise Session among Sedentary Adults. Journal of Cancer Epidemiology, 2012, pp. 1–12. DOI: 10.1155/2012/540563
18. Lancaster T.M., Linden D.E., Heerey E.A. COMT Val158met Predicts Reward Responsiveness in Humans. Genes, Brain and Behavior, 2012, vol. 11, no. 8, pp. 986–992. DOI: 10.1111/j.1601-183X.2012.00838.x
19. Machiela M.J., Chanock S.J. LDlink: A Web-Based Application for Exploring Population-Specific Haplotype Structure and Linking Correlated Alleles of Possible Functional Variants. Bioinformatics (Oxford, England), 2015, vol. 31, no. 21, pp. 3555–3557. DOI: 10.1093/bioinformatics/btv402
20. Nishida Y., Ivadomi M., Higaki Y. et al. Association between the PPARGC1A Polymorphism and Aerobic Capacity in Japanese Middle-Aged Men. Internal Medicine, 2015, vol. 54, no. 4, pp. 359–366. DOI: 10.2169/internalmedicine.54.3170
21. Pickering C., Kiely J. Exercise Genetics: Seeking Clarity from Noise. BMJ Open Sport and Exercice Medicine, 2017, vol. 3, no. 1, e000309. DOI: 10.1136/bmjsem-2017-000309
22. Rankinen T., Bouchard C. Genetic Predictors of Exercise Training Response. Current Cardiovascular Risk Reports, 2011, vol. 5, no. 4, pp. 368–372. DOI: 10.1007/s12170-011-0179-z
23. Rankinen T., Roth S.M., Bray M.S. et al. Advances in Exercise, Fitness, and Performance Genomics. Medicine & Science in Sports & Exercise, 2010, vol. 42, no. 5, pp. 835–846. DOI: 10.1249/MSS.0b013e3181d86cec
24. Rankinen T., Argyropoulos G., Rice T. et al. CREB1 Is a Strong Genetic Predictor of the Variation in Exercise Heart Rate Response to Regular Exercise. Circulation: Cardiovascular Genetics, 2010, vol. 3, no. 3, pp. 294–299. DOI: 10.1161/CIRCGENETICS.109.925644
25. Sandholt C.H., Vestmar M.A., Bille D.S. et al. Studies of Metabolic Phenotypic Correlates of 15 Obesity Associated Gene Variants. Ed. Christian Herder. PLoS ONE, 2011, vol. 6, no. 9, e23531. DOI: 10.1371/journal.pone.0023531
26. Santiago C., Ruiz J., Buxens A. et al. Trp64Arg Polymorphism in ADRB3 Gene Is Associated with Elite Endurance Performance. British Journal of Sports & Medicine, 2011, vol. 45, no. 2, pp. 147–149. DOI: 10.1136/bjsm. 2009.061366
27. Santos C.G.M., Pimentel-Coelho P.M., Budowle B. et al. The Heritable Path of Human Physical Performance: From Single Polymorphisms to the ‘next Generation. Scandinavian Journal of Medicine and Science in Sports, 2016, vol. 26, no. 6, pp. 600–612. DOI: 10.1111/sms.12503
28. Thorleifsson G., Walters G.B., Gudbjartsson D.F. et al. Genome-Wide Association Yields New Sequence Variants at Seven Loci That Associate with Measures of Obesity. Nature Genetics, 2009, vol. 41, no. 1, pp. 18–24. DOI: 10.1038/ng.274
29. Willer C.J., Speliotes E.K., Loos R.J. et al. Six New Loci Associated with Body Mass Index Highlight a Neuronal Influence on Body Weight Regulation. Nature Genetics, 2009, vol. 41, no. 1, pp. 25–34. DOI: 10.1038/ng.287
30. Židek R., Šimonek J. Talent in Sport. Ústí nad Labem, Univerzita J. E. Purkyně, 2019. 102 p.
References
1. Åberg E., Fandino-Losada A., Sjőholm L.K. et al. The Functional Val158Met Polymorphism in Catechol-O-Methyltransferase (COMT) Is Associated with Depression and Motivation in Men from a Swedish Population-Based Study. Journal of Affective Disorders, 2011, vol. 129, no. 1–3, pp. 158–166. DOI: 10.1016/ j.jad.2010.08.0092. Ahmetov I.I., Rogozkin V.A. Genes, Athlete Status and Training – An Overview. Medicine and Sport Science, 2009, vol. 54, pp. 43–71. DOI: 10.1159/000235696
3. Ahmetov I.I., Hakimullina A.M., Lyubaeva E.V. et al. Effect of HIF1A Gene Polymorphism on Human Muscle Performance. Bulletin of Experimental Biology and Medicine, 2008, vol. 146, no. 3, pp. 351–353. DOI: 10.1007/s10517-008-0291-3
4. Auton A., Abecasis G.R., Altshuler D.M. et al. A Global Reference for Human Genetic Variation. Nature, 2015, vol. 526 (7571), pp. 68–74. DOI: 10.1038/nature15393
5. Berndt S.I., Gustafsson S., Mägi R. et al. Genome-Wide Meta-Analysis Identifies 11 New Loci for Anthropometric Traits and Provides Insights into Genetic Architecture. Nature Genetics, 2013, vol. 45, no. 5, pp. 501–512. DOI: 10.1038/ng.2606
6. Bouchard C., Antunes-Correa L.M., Ashley E.A. et al. Personalized Preventive Medicine: Genetics and the Response to Regular Exercise in Preventive Interventions. Progress in Cardiovascular Diseases, 2015, vol. 57, no. 4, pp. 337–346. DOI: 10.1016/j.pcad.2014.08.005
7. Bouchard C., Sarzynski M.A., Rice T.K. et al. Genomic Predictors of the Maximal O2 Uptake Response to Standardized Exercise Training Programs. Journal of Applied Physiology, 2011, vol. 110, no. 5, pp. 1160–1170. DOI: 10.1152/japplphysiol.00973.2010
8. Buxens A., Ruiz J.R., Arteta D. et al. Can We Predict Top-Level Sports Performance in Power vs Endurance Events? A Genetic Approach. Scandinavian Journal of Medicine and Science in Sports, 2011, vol. 21, no. 4, pp. 570–579. DOI: 10.1111/j.1600-0838.2009. 01079.x
9. Chen C., Sun Y., Liang H. et al. A Meta-Analysis of the Association of CKM Gene Rs8111989 Polymorphism with Sport Performance. Biology of Sport, 2017, vol. 34, no. 4, pp. 323–330. DOI: 10.5114/biolsport.2017.69819
10. Döring F., Onur S., Fischer A. et al. A Common Haplotype and the Pro582Ser Polymorphism of the Hypoxia-Inducible Factor-1 (HIF1A) Gene in Elite Endurance Athletes. Journal of Applied Physiology, 2010, vol. 108, pp. 1497–1500. DOI: 10.1152/japplphysiol. 01165.2009
11. Ehrenborg E.W., Krook A. Regulation of Skeletal Muscle Physiology and Metabolism by Peroxisome Proliferator-Activated Receptor. Pharmacological Review, 2009, vol. 61, no. 3, pp. 373–393. DOI: 10.1124/pr.109.001560
12. Felix J.F., Bradfield J.P., Monnereau C. et al. Genome-Wide Association Analysis Identifies Three New Susceptibility Loci for Childhood Body Mass Index. Human Molecular Genetics, 2015, vol. 25, no. 2, pp. 1–52. DOI: 10.1093/hmg/ddv472
13. Ginevičienė V., Jakaitiene A., Prancu-lis A. et al. AMPD1 Rs17602729 Is Associated with Physical Performance of Sprint and Power in Elite Lithuanian Athletes. BMC Genetics, 2014, vol. 15, no. 58. DOI: 10.1186/1471-2156-15-58
14. Graff M., Scott R.A., Justice A.E. et al. Genome-Wide Physical Activity Interactions in Adiposity – A Meta-Analysis of 200,452 Adults. ed. Todd L. Edwards. PLoS Genetics, 2017, vol. 13, no. 4, e1006528. DOI: 10.1371/journal. pgen.1006528
15. Graff M., North K.E., Richardson A.S. et al. BMI Loci and Longitudinal BMI from Adolescence to Young Adulthood in an Ethnically Diverse Cohort. International Journal of Obesity, 2017, vol. 41, no. 5, pp. 759–768. DOI: 10.1038/ijo.2016.233
16. Johnston K., Wattie N., Schorer J., Baker J. Talent Identification in Sport: A Systematic Review. Sports Med, 2018, vol. 48, no. 1, pp. 97–109. DOI: 10.1007/s40279-017-0803-2
17. Karoly H.C., Stevens C.J., Magnan R.E. et al. Genetic Influences on Physiological and Subjective Responses to an Aerobic Exercise Session among Sedentary Adults. Journal of Cancer Epidemiology, 2012, pp. 1–12. DOI: 10.1155/2012/540563
18. Lancaster T.M., Linden D.E., Heerey E.A. COMT Val158met Predicts Reward Responsiveness in Humans. Genes, Brain and Behavior, 2012, vol. 11, no. 8, pp. 986–992. DOI: 10.1111/j.1601-183X.2012.00838.x
19. Machiela M.J., Chanock S.J. LDlink: A Web-Based Application for Exploring Population-Specific Haplotype Structure and Linking Correlated Alleles of Possible Functional Variants. Bioinformatics (Oxford, England), 2015, vol. 31, no. 21, pp. 3555–3557. DOI: 10.1093/bioinformatics/btv402
20. Nishida Y., Ivadomi M., Higaki Y. et al. Association between the PPARGC1A Polymorphism and Aerobic Capacity in Japanese Middle-Aged Men. Internal Medicine, 2015, vol. 54, no. 4, pp. 359–366. DOI: 10.2169/internalmedicine.54.3170
21. Pickering C., Kiely J. Exercise Genetics: Seeking Clarity from Noise. BMJ Open Sport and Exercice Medicine, 2017, vol. 3, no. 1, e000309. DOI: 10.1136/bmjsem-2017-000309
22. Rankinen T., Bouchard C. Genetic Predictors of Exercise Training Response. Current Cardiovascular Risk Reports, 2011, vol. 5, no. 4, pp. 368–372. DOI: 10.1007/s12170-011-0179-z
23. Rankinen T., Roth S.M., Bray M.S. et al. Advances in Exercise, Fitness, and Performance Genomics. Medicine & Science in Sports & Exercise, 2010, vol. 42, no. 5, pp. 835–846. DOI: 10.1249/MSS.0b013e3181d86cec
24. Rankinen T., Argyropoulos G., Rice T. et al. CREB1 Is a Strong Genetic Predictor of the Variation in Exercise Heart Rate Response to Regular Exercise. Circulation: Cardiovascular Genetics, 2010, vol. 3, no. 3, pp. 294–299. DOI: 10.1161/CIRCGENETICS.109.925644
25. Sandholt C.H., Vestmar M.A., Bille D.S. et al. Studies of Metabolic Phenotypic Correlates of 15 Obesity Associated Gene Variants. Ed. Christian Herder. PLoS ONE, 2011, vol. 6, no. 9, e23531. DOI: 10.1371/journal.pone.0023531
26. Santiago C., Ruiz J., Buxens A. et al. Trp64Arg Polymorphism in ADRB3 Gene Is Associated with Elite Endurance Performance. British Journal of Sports & Medicine, 2011, vol. 45, no. 2, pp. 147–149. DOI: 10.1136/bjsm. 2009.061366
27. Santos C.G.M., Pimentel-Coelho P.M., Budowle B. et al. The Heritable Path of Human Physical Performance: From Single Polymorphisms to the ‘next Generation. Scandinavian Journal of Medicine and Science in Sports, 2016, vol. 26, no. 6, pp. 600–612. DOI: 10.1111/sms.12503
28. Thorleifsson G., Walters G.B., Gudbjartsson D.F. et al. Genome-Wide Association Yields New Sequence Variants at Seven Loci That Associate with Measures of Obesity. Nature Genetics, 2009, vol. 41, no. 1, pp. 18–24. DOI: 10.1038/ng.274
29. Willer C.J., Speliotes E.K., Loos R.J. et al. Six New Loci Associated with Body Mass Index Highlight a Neuronal Influence on Body Weight Regulation. Nature Genetics, 2009, vol. 41, no. 1, pp. 25–34. DOI: 10.1038/ng.287
30. Židek R., Šimonek J. Talent in Sport. Ústí nad Labem, Univerzita J. E. Purkyně, 2019. 102 p.
Copyright (c) 2021 Человек. Спорт. Медицина
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.