ВЛИЯНИЕ КРАТКОВРЕМЕННОЙ СМЕНЫ ДИЕТЫ НА ПОКАЗАТЕЛИ УТОМЛЯЕМОСТИ У ТЕННИСИСТОВ
Аннотация
Цель. Целью данного исследования было определение влияния кратковременной смены диеты на плазменные показатели утомляемости (плазменные концентрации серотонина и дофамина, соотношение серотонин / дофамин, содержание аммиака и лактата) после двух-часового теннисного матча. Материалы и методы. Рандомизированное перекрестное исследование с участием 32 полупрофессиональных теннисистов, поделенных на две группы в зависимости от режима питания (со сменой диеты и без смены диеты). Все участники исследования сыграли двухчасовую партию в теннис. До и после теннисной партии у всех участников были определены плазменные показатели утомляемости и показатели субъективно воспринимаемой напряженности. Результаты. Результаты исследований показывают статистически значимый прирост (p < 0,001) плазменных концентраций серотонина, дофамина, лактата и аммиака в обеих группах по сравнению с исходными значениями, при этом статистически значимое (p < 0,001) увеличение соотношения серотонин / дофамин было зарегистрировано только в группе без изменения диеты. Увеличение концентраций аммиака (p < 0,001) и серотонина (p < 0,05), а также увеличение соотношения серотонин / дофамин (p < 0,05) в группе со сменой диеты было значительно ниже по сравнению с показателями контрольной группы. Хотя концентрации лактата и дофамина после партии в группе со сменой диеты были выше на 21 и 8 % соответственно, данные изменения не были статистически значимыми. Сильная и умеренная корреляция была зарегистрирована между показателями субъективно воспринимаемой напряженности и соотношением серотонин / дофамин (p < 0,001) и прочими переменными (p < 0,001) соответственно, при этом для дофамина была обнаружена отрицательная корреляция (p < 0,05). Заключение. По результатам исследования было установлено, что кратковременная смена диеты может повлечь изменения большинства показателей утомляемости. Таким образом, изменение режима питания может быть рекомендовано для контроля утомляемости и поддержания результативности теннисистов. Наиболее информативным показателем утомляемости может считаться соотношение концентраций серотонина и дофамина.
Литература
2. Balthazar C.H., Leite L.H.R., Rodrigues A.G., Coimbra C.C. Performance-Enhancing and Thermoregulatory Effects of Intracerebroventricular Dopamine In Running Rats. Pharmacology Biochemistry and Behavior, 2009, vol. 93, no. 4, pp. 465–469. DOI: 10.1016/j.pbb.2009.06.009
3. Bangsbo J., Hostrup M. Lactate Production Contributes to Development of Fatigue During Intense Exercise in Humans. Ugeskrift for laeger, 2019, vol. 181, no. 8.
4. Basso J.C., Suzuki W.A. The Effects of Acute Exercise on Mood, Cognition, Neuro-physiology, and Neurochemical Pathways: A Review. Brain Plasticity, 2017, vol. 2, no. 2, pp. 127–152. DOI: 10.3233/bpl-160040
5. Carvalho-peixoto J., Alves R.C., Cameron L.C. Glutamine and Carbohydrate Supplements Reduce Ammonemia Increase During Endurance Field Exercise. Applied Physiology, Nutrition, and Metabolism, 2007, vol. 1190, pp. 1186–1190. DOI: 10.1139/H07-091
6. Chuckravanen D., Bulut S., Kürklü G.B., Yapali G. Review of Exercise-Induced Physiological Control Models to Explain the Development of Fatigue To Improve Sports Performance and Future Trend. Science & Sports, 2018, vol. 34, no. 3, pp. 131–140. DOI: 10.1016/ j.scispo.2018.10.017
7. Coimbra C.C., Soares D.D., Leite L.H. The Involvement of Brain Monoamines in the Onset of Hyperthermic Central Fatigue. An International Perspective on Topics in Sports Medicine and Sports Injury, 2012, pp. 275–306. DOI: 10.5772/26191
8. Cordeiro L.M.S., Rabelo P.C.R., Moraes M.M., Teixeira-Coelho F. Physical Exercise-Induced Fatigue: the Role of Serotonergic and Dopaminergic Systems. Brazilian Journal of Medical and Biological Research, 2017, vol. 50, no. 12, pp. 1–13. DOI: 10.1590/1414-431x20176432
9. Fernandez-Fernandez J., Mendez-Villanueva A., Fernandez-Garcia B., Terrados N. Match Activity and Physiological Responses During a Junior Female Singles Tennis Tournament. British Journal of Sports Medicine, 2007, vol. 41, no. 11, pp. 711–716. DOI: 10.1136/bjsm.2007.036210
10. Fernandez-Fernandez J., Sanz-Rivas D., Fernandez-Garcia B., Mendez-Villanueva A. Match Activity and Physiological Load During a Clay-Court Tennis Tournament in Elite Female Players. Journal of Sports Sciences, 2008, vol. 26, no. 14, pp. 1589–1595. DOI: 10.1080/02640410802287089
11. Fernandez-Fernandez J., Sanz-Rivas D., Mendez-Villanueva A. A Review of the Activity Profile and Physiological Demands of Tennis Match Play. Strength and Conditioning Journal, 2009, vol. 31, no. 4, pp. 15–26. DOI: 10.1519/SSC.0b013e3181ada1cb
12. Foley T.E., Fleshner M. Neuroplasticity of Dopamine Circuits after Exercise: Implications for Central Fatigue. NeuroMolecular Medicine, 2008, vol. 10, no. 2, pp. 67–80. DOI: 10.1007/s12017-008-8032-3
13. Fonseca A., Bernardo M.A., Mesquita M.F.D., Brito J. Effect of 6% Maltodextrin Intake on Capillary Lactate Concentration in Soccer Players. Medical Sciences Forum, 2021, vol. 5, no. 1, p. 42. DOI: 10.3390/msf2021005042
14. Heater H.F., Alan E.M. Practical Application in Sports Nutrition, 5th Edition. Massachusetts, Jones and Bartlett Publisher, 2018. pp. 302–306.
15. Hopkins W.G., Marshall S.W., Batter-ham A.M., Hanin J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Medicine and Science in Sports and Exercise, 2009, vol. 41, no. 1, pp. 3–12. DOI: 10.1249/ MSS.0b013e31818cb278
16. Hornery D.J., Farrow D., Mujika I., Young W.B. Caffeine, Carbohydrate, and Cooling Use During Prolonged Simulated Tennis. International Journal of Sports Physiology and Performance, 2008, vol. 2, no. 4, pp. 423–438. DOI: 10.1123/ijspp.2.4.423
17. Hornery D.J., Farrow D., Mujika I., Young W. Fatigue In Tennis. Sports Medicine, 2007, vol. 37, no. 3, pp. 199–212. DOI: 10.2165/00007256-200737030-00002
18. Juzwiak C.R., Amancio O.M.S., Vitalle M.S.S., Pinheiro M.M. Body Composition and Nutritional Profile of Male Adolescent Tennis Players. Journal of Sports Sciences, 2008, vol. 26, no. 11, pp. 1209–1217. DOI: 10.1080/ 02640410801930192
19. Kim D.-H., Kim S.-H., Jeong W.-S., Lee H.-Y. Effect of BCAA Intake During Endurance Exercises on Fatigue Substances, Muscle Damage Substances, and Energy Metabolism Substances. Journal of Exercise Nutrition and Biochemistry, 2013, vol. 17, no. 4. DOI: 10.5717/jenb.2013.17.4.169
20. Kovacs M.S. Carbohydrate Intake and Tennis: Are There Benefits? British Journal of Sports Medicine, 2006, vol. 40, no. 5, pp. 1–6. DOI: 10.1136/bjsm.2005.023291
21. Kwak J., Yook J.S., Ha M. Potential Biomarkers of Peripheral and Central Fatigue in High- Intensity Trained Athletes at High-Temperature. Journal of Immunology Research, 2020. DOI: 10.1155/2020/4768390
22. Leite L.H., Rodrigues A.G., Soares D.D., Marubayashi U. Central Fatigue Induced by Losartan Involves Brain Serotonin and Dopamine Content. Medicine and Science in Sports and Exercise, 2010, vol. 42, no. 8, pp. 1469–1476. DOI: 10.1249/MSS.0b013e3181d03d3
23. MacLaren D., Morton J. Biochemistry for Sport and Exercise Metabolism. John Wiley & Sons, 2011. 265 p.
24. Maraga N., Duffield R., Gescheit D., Perri T. Playing Not Once, Not Twice but Three Times in a Day: the Effect of Fatigue on Performance in Junior Tennis Players. International Journal of Performance Analysis in Sport, 2018, vol. 18, no. 1, pp. 104–114. DOI: 10.1080/24748668.2018.1452110
25. McMahon G., Thornbury A. Ingestion of Carbohydrate Prior to and during Maximal, Sprint Interval Cycling Has No Ergogenic Effect: A Randomized, Double-Blind, Placebo Controlled, Crossover Study. Nutrients, 2020, vol. 12, no. 8, pp. 1–12. DOI: 10.3390/nu12082223
26. McRae K.A., Galloway S.D.R. Carbo-hydrate-Electrolyte Drink Ingestion and Skill Performance During and after 2 Hr of Indoor Tennis Match Play. International Journal of Sport Nutrition and Exercise Metabolism, 2012, vol. 22, no. 1, pp. 38–46. DOI: 10.1123/ijsnem.22.1.38
27. Meeusen R., Roelands B. Fatigue: Is It All Neurochemistry? European Journal of Sport Science, 2018, vol. 18, no. 1, pp. 37–46. DOI: 10.1080/17461391.2017.1296890
28. Mehrez A., Salesi M. Sport Nutrition and Doping Knowledge, Eating Habits and Supplement Use in Tennis Athletes and Coaches. Shiraz University, 2017.
29. Mendez-Villanueva A., Fernandez-Fernandez J., Bishop D., Fernandez-Garcia B. Activity Patterns, Blood Lactate Concentrations and Ratings of Perceived Exertion During a Professional Singles Tennis Tournament. British Journal of Sports Medicine, 2007, vol. 41, no. 5, pp. 296–300. DOI: 10.1136/bjsm.2006.030536
30. Mendez-Villanueva A., Fernandez-Fernández J., Bishop D., Fernandez-Garcia B. Ratings of Perceived Exertion-Lactate Association During Actual Singles Tennis Match Play. The Journal of Strength & Conditioning Research, 2010, vol. 24, no. 1, pp. 165–170. DOI: 10.1519/JSC.0b013e3181a5bc6d
31. Nybo L., Dalsgaard M.K., Steensberg A., Møller K. Cerebral Ammonia Uptake and Accumulation During Prolonged Exercise In Humans. Journal of Physiology, 2005, vol. 563, no. 1, pp. 285–290. DOI: 10.1113/jphysiol.2004.075838
32. Oršolić M., Barbaros Tudor P., Šarić A. Recommended Amounts of Macronutrients before and after Tennis Matches. Hrana u zdravlju i bolesti, 2020, vol. 9, no. 1, pp. 40–47.
33. Parker-Simmons S., Love P. Sports Nutrition for Tennis Players. Tennis Medicine, 2018, vol. 34, no. 1, pp. 563–572. DOI: 10.1007/978-3-319-71498-1
34. Phillips S. Fatigue in Sport and Exercise. London, Routledge, 2015. 271 p. DOI: 10.4324/9781315814858
35. Rabelo P.C.R., Almeida T.F., Guima-rães J.B., Barcellos L.A.M. Intrinsic Exercise Capacity Is Related to Differential Monoaminergic Activity in the Rat Forebrain. Brain Research Bulletin, 2015, vol. 112, pp. 7–13. DOI: 10.1016/j.brainresbull.2015.01.006
36. Ranchordas M.K., Rogerson D., Ruddock A., Killer C. Nutrition for Tennis: Practical Recommendations. Journal of Sports Science & Medicine, 2013, vol. 12, no. 2, pp. 211–224.
37. Reid M., Duffield R., Dawson B., Baker J. Quantification of the Physiological and Performance Characteristics of On-Court Tennis Drills. British Journal of Sports Medicine, 2008, vol. 42, no. 2, pp. 146–151. DOI: 10.1136/bjsm.2007.036426
38. Rota S., Morel B., Saboul D., Rogowski I. Influence of Fatigue on Upper Limb Muscle Activity and Performance in Tennis. Journal of Electromyography and Kinesiology, 2014, vol. 24, no. 1, pp. 90–97. DOI: 10.1016/j.jelekin. 2013.10.007
39. Rusip G., Suhartini S.M., Suen A.B. Influence of Exercise on Plasma Ammonia and Urea after Ingestion Beverages of Carbo-hydrate Electrolyte. IOP Conference Series: Earth and Environmental Science, 2018, vol. 130, no. 1, pp. 12–20. DOI: 10.1088/1755-1315/130/1/012020
40. Schulz H., Heck H. Glycogen Depletion as Indication for Ammonia Determination in Exercise Testing. European Journal of Sport Science, 2003, vol. 3, no. 3, pp. 1–9. DOI: 10.1080/17461390300073303
41. Snow R.J., Carey M.F., Stathis C.G., Febbraio M.A. Effect of Carbohydrate Ingestion on Ammonia Metabolism During Exercise in Humans. Journal of Applied Physiology, 2020, vol. 88, no. 5, pp. 1576–1580. DOI: 10.1152/ jappl.2000.88.5.1576
42. Soraya S., Elias M., Saad H.A., Nasir M. Effects of Sports Nutrition Education Intervention on Sports Nutrition Knowledge, Attitude and Practice, and Dietary Intake of Malaysian Team Sports Athletes. Malaysian Journal of Nutrition, 2018, vol. 24, no. 1, p. 103.
43. Sutoo D., Akiyama K. Regulation of Brain Function by Exercise. Neurobiology of Disease, 2003, vol. 13, no. 1, pp. 1–14. DOI: 10.1016/S0969-9961(03)00030-5
44. Thomas D.T., Erdman K.A., Burke L.M. American College of Sports Medicine Joint Position Statement Nutrition and Athletic Performance. Medicine and Science in Sports and Exercise, 2016, vol. 48, no. 3, pp. 543–568. DOI: 10.1249/MSS.0000000000000852
45. Thomas D.T., Erdman K.A., Burke L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Medicine and Science in Sports and Exercise, 2016, vol. 48 (3), pp. 543–568. DOI: 10.1249/MSS.0000000000000852
46. Vergauwen L.I.E.V.E.N., Brouns F.R.E.D., Hespel P. Carbohydrate Supplementation Improves Stroke Performance in Tennis. Medicine and Science in Sports and Exercise, 1998, vol. 30, no. 8, pp. 1289–1295. DOI: 10.1097/ 00005768-199808000-00017
47. Wilkinson D.J., Smeeton N.J., Watt P.W. Ammonia Metabolism, the Brain and Fatigue; Revisiting the Link. Progress in Neurobiology, 2010, vol. 91, no. 3, pp. 200–219. DOI: 10.1016/j.pneurobio.2010.01.012
48. Zimmer P., Stritt C., Bloch W., Schmidt F.P. The Effects of Different Aerobic Exercise Intensities on Serum Serotonin Concentrations and Their Association with Stroop Task Performance: a Randomized Controlled Trial. European Journal of Applied Physiology, 2016, vol. 116, no. 10, pp. 2025–2034. DOI: 10.1007/s00421-016-3456-1
References
1. Ali A., Williams C. Carbohydrate Ingestion and Soccer Skill Performance During Prolonged Intermittent Exercise. Journal of Sports Sciences, 2009, vol. 27, no. 14, pp. 1499–1508. DOI: 10.1080/026404109033347722. Balthazar C.H., Leite L.H.R., Rodrigues A.G., Coimbra C.C. Performance-Enhancing and Thermoregulatory Effects of Intracerebroventricular Dopamine In Running Rats. Pharmacology Biochemistry and Behavior, 2009, vol. 93, no. 4, pp. 465–469. DOI: 10.1016/j.pbb.2009.06.009
3. Bangsbo J., Hostrup M. Lactate Production Contributes to Development of Fatigue During Intense Exercise in Humans. Ugeskrift for laeger, 2019, vol. 181, no. 8.
4. Basso J.C., Suzuki W.A. The Effects of Acute Exercise on Mood, Cognition, Neuro-physiology, and Neurochemical Pathways: A Review. Brain Plasticity, 2017, vol. 2, no. 2, pp. 127–152. DOI: 10.3233/bpl-160040
5. Carvalho-peixoto J., Alves R.C., Cameron L.C. Glutamine and Carbohydrate Supplements Reduce Ammonemia Increase During Endurance Field Exercise. Applied Physiology, Nutrition, and Metabolism, 2007, vol. 1190, pp. 1186–1190. DOI: 10.1139/H07-091
6. Chuckravanen D., Bulut S., Kürklü G.B., Yapali G. Review of Exercise-Induced Physiological Control Models to Explain the Development of Fatigue To Improve Sports Performance and Future Trend. Science & Sports, 2018, vol. 34, no. 3, pp. 131–140. DOI: 10.1016/ j.scispo.2018.10.017
7. Coimbra C.C., Soares D.D., Leite L.H. The Involvement of Brain Monoamines in the Onset of Hyperthermic Central Fatigue. An International Perspective on Topics in Sports Medicine and Sports Injury, 2012, pp. 275–306. DOI: 10.5772/26191
8. Cordeiro L.M.S., Rabelo P.C.R., Moraes M.M., Teixeira-Coelho F. Physical Exercise-Induced Fatigue: the Role of Serotonergic and Dopaminergic Systems. Brazilian Journal of Medical and Biological Research, 2017, vol. 50, no. 12, pp. 1–13. DOI: 10.1590/1414-431x20176432
9. Fernandez-Fernandez J., Mendez-Villanueva A., Fernandez-Garcia B., Terrados N. Match Activity and Physiological Responses During a Junior Female Singles Tennis Tournament. British Journal of Sports Medicine, 2007, vol. 41, no. 11, pp. 711–716. DOI: 10.1136/bjsm.2007.036210
10. Fernandez-Fernandez J., Sanz-Rivas D., Fernandez-Garcia B., Mendez-Villanueva A. Match Activity and Physiological Load During a Clay-Court Tennis Tournament in Elite Female Players. Journal of Sports Sciences, 2008, vol. 26, no. 14, pp. 1589–1595. DOI: 10.1080/02640410802287089
11. Fernandez-Fernandez J., Sanz-Rivas D., Mendez-Villanueva A. A Review of the Activity Profile and Physiological Demands of Tennis Match Play. Strength and Conditioning Journal, 2009, vol. 31, no. 4, pp. 15–26. DOI: 10.1519/SSC.0b013e3181ada1cb
12. Foley T.E., Fleshner M. Neuroplasticity of Dopamine Circuits after Exercise: Implications for Central Fatigue. NeuroMolecular Medicine, 2008, vol. 10, no. 2, pp. 67–80. DOI: 10.1007/s12017-008-8032-3
13. Fonseca A., Bernardo M.A., Mesquita M.F.D., Brito J. Effect of 6% Maltodextrin Intake on Capillary Lactate Concentration in Soccer Players. Medical Sciences Forum, 2021, vol. 5, no. 1, p. 42. DOI: 10.3390/msf2021005042
14. Heater H.F., Alan E.M. Practical Application in Sports Nutrition, 5th Edition. Massachusetts, Jones and Bartlett Publisher, 2018. pp. 302–306.
15. Hopkins W.G., Marshall S.W., Batter-ham A.M., Hanin J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Medicine and Science in Sports and Exercise, 2009, vol. 41, no. 1, pp. 3–12. DOI: 10.1249/ MSS.0b013e31818cb278
16. Hornery D.J., Farrow D., Mujika I., Young W.B. Caffeine, Carbohydrate, and Cooling Use During Prolonged Simulated Tennis. International Journal of Sports Physiology and Performance, 2008, vol. 2, no. 4, pp. 423–438. DOI: 10.1123/ijspp.2.4.423
17. Hornery D.J., Farrow D., Mujika I., Young W. Fatigue In Tennis. Sports Medicine, 2007, vol. 37, no. 3, pp. 199–212. DOI: 10.2165/00007256-200737030-00002
18. Juzwiak C.R., Amancio O.M.S., Vitalle M.S.S., Pinheiro M.M. Body Composition and Nutritional Profile of Male Adolescent Tennis Players. Journal of Sports Sciences, 2008, vol. 26, no. 11, pp. 1209–1217. DOI: 10.1080/ 02640410801930192
19. Kim D.-H., Kim S.-H., Jeong W.-S., Lee H.-Y. Effect of BCAA Intake During Endurance Exercises on Fatigue Substances, Muscle Damage Substances, and Energy Metabolism Substances. Journal of Exercise Nutrition and Biochemistry, 2013, vol. 17, no. 4. DOI: 10.5717/jenb.2013.17.4.169
20. Kovacs M.S. Carbohydrate Intake and Tennis: Are There Benefits? British Journal of Sports Medicine, 2006, vol. 40, no. 5, pp. 1–6. DOI: 10.1136/bjsm.2005.023291
21. Kwak J., Yook J.S., Ha M. Potential Biomarkers of Peripheral and Central Fatigue in High- Intensity Trained Athletes at High-Temperature. Journal of Immunology Research, 2020. DOI: 10.1155/2020/4768390
22. Leite L.H., Rodrigues A.G., Soares D.D., Marubayashi U. Central Fatigue Induced by Losartan Involves Brain Serotonin and Dopamine Content. Medicine and Science in Sports and Exercise, 2010, vol. 42, no. 8, pp. 1469–1476. DOI: 10.1249/MSS.0b013e3181d03d3
23. MacLaren D., Morton J. Biochemistry for Sport and Exercise Metabolism. John Wiley & Sons, 2011. 265 p.
24. Maraga N., Duffield R., Gescheit D., Perri T. Playing Not Once, Not Twice but Three Times in a Day: the Effect of Fatigue on Performance in Junior Tennis Players. International Journal of Performance Analysis in Sport, 2018, vol. 18, no. 1, pp. 104–114. DOI: 10.1080/24748668.2018.1452110
25. McMahon G., Thornbury A. Ingestion of Carbohydrate Prior to and during Maximal, Sprint Interval Cycling Has No Ergogenic Effect: A Randomized, Double-Blind, Placebo Controlled, Crossover Study. Nutrients, 2020, vol. 12, no. 8, pp. 1–12. DOI: 10.3390/nu12082223
26. McRae K.A., Galloway S.D.R. Carbo-hydrate-Electrolyte Drink Ingestion and Skill Performance During and after 2 Hr of Indoor Tennis Match Play. International Journal of Sport Nutrition and Exercise Metabolism, 2012, vol. 22, no. 1, pp. 38–46. DOI: 10.1123/ijsnem.22.1.38
27. Meeusen R., Roelands B. Fatigue: Is It All Neurochemistry? European Journal of Sport Science, 2018, vol. 18, no. 1, pp. 37–46. DOI: 10.1080/17461391.2017.1296890
28. Mehrez A., Salesi M. Sport Nutrition and Doping Knowledge, Eating Habits and Supplement Use in Tennis Athletes and Coaches. Shiraz University, 2017.
29. Mendez-Villanueva A., Fernandez-Fernandez J., Bishop D., Fernandez-Garcia B. Activity Patterns, Blood Lactate Concentrations and Ratings of Perceived Exertion During a Professional Singles Tennis Tournament. British Journal of Sports Medicine, 2007, vol. 41, no. 5, pp. 296–300. DOI: 10.1136/bjsm.2006.030536
30. Mendez-Villanueva A., Fernandez-Fernández J., Bishop D., Fernandez-Garcia B. Ratings of Perceived Exertion-Lactate Association During Actual Singles Tennis Match Play. The Journal of Strength & Conditioning Research, 2010, vol. 24, no. 1, pp. 165–170. DOI: 10.1519/JSC.0b013e3181a5bc6d
31. Nybo L., Dalsgaard M.K., Steensberg A., Møller K. Cerebral Ammonia Uptake and Accumulation During Prolonged Exercise In Humans. Journal of Physiology, 2005, vol. 563, no. 1, pp. 285–290. DOI: 10.1113/jphysiol.2004.075838
32. Oršolić M., Barbaros Tudor P., Šarić A. Recommended Amounts of Macronutrients before and after Tennis Matches. Hrana u zdravlju i bolesti, 2020, vol. 9, no. 1, pp. 40–47.
33. Parker-Simmons S., Love P. Sports Nutrition for Tennis Players. Tennis Medicine, 2018, vol. 34, no. 1, pp. 563–572. DOI: 10.1007/978-3-319-71498-1
34. Phillips S. Fatigue in Sport and Exercise. London, Routledge, 2015. 271 p. DOI: 10.4324/9781315814858
35. Rabelo P.C.R., Almeida T.F., Guima-rães J.B., Barcellos L.A.M. Intrinsic Exercise Capacity Is Related to Differential Monoaminergic Activity in the Rat Forebrain. Brain Research Bulletin, 2015, vol. 112, pp. 7–13. DOI: 10.1016/j.brainresbull.2015.01.006
36. Ranchordas M.K., Rogerson D., Ruddock A., Killer C. Nutrition for Tennis: Practical Recommendations. Journal of Sports Science & Medicine, 2013, vol. 12, no. 2, pp. 211–224.
37. Reid M., Duffield R., Dawson B., Baker J. Quantification of the Physiological and Performance Characteristics of On-Court Tennis Drills. British Journal of Sports Medicine, 2008, vol. 42, no. 2, pp. 146–151. DOI: 10.1136/bjsm.2007.036426
38. Rota S., Morel B., Saboul D., Rogowski I. Influence of Fatigue on Upper Limb Muscle Activity and Performance in Tennis. Journal of Electromyography and Kinesiology, 2014, vol. 24, no. 1, pp. 90–97. DOI: 10.1016/j.jelekin. 2013.10.007
39. Rusip G., Suhartini S.M., Suen A.B. Influence of Exercise on Plasma Ammonia and Urea after Ingestion Beverages of Carbo-hydrate Electrolyte. IOP Conference Series: Earth and Environmental Science, 2018, vol. 130, no. 1, pp. 12–20. DOI: 10.1088/1755-1315/130/1/012020
40. Schulz H., Heck H. Glycogen Depletion as Indication for Ammonia Determination in Exercise Testing. European Journal of Sport Science, 2003, vol. 3, no. 3, pp. 1–9. DOI: 10.1080/17461390300073303
41. Snow R.J., Carey M.F., Stathis C.G., Febbraio M.A. Effect of Carbohydrate Ingestion on Ammonia Metabolism During Exercise in Humans. Journal of Applied Physiology, 2020, vol. 88, no. 5, pp. 1576–1580. DOI: 10.1152/ jappl.2000.88.5.1576
42. Soraya S., Elias M., Saad H.A., Nasir M. Effects of Sports Nutrition Education Intervention on Sports Nutrition Knowledge, Attitude and Practice, and Dietary Intake of Malaysian Team Sports Athletes. Malaysian Journal of Nutrition, 2018, vol. 24, no. 1, p. 103.
43. Sutoo D., Akiyama K. Regulation of Brain Function by Exercise. Neurobiology of Disease, 2003, vol. 13, no. 1, pp. 1–14. DOI: 10.1016/S0969-9961(03)00030-5
44. Thomas D.T., Erdman K.A., Burke L.M. American College of Sports Medicine Joint Position Statement Nutrition and Athletic Performance. Medicine and Science in Sports and Exercise, 2016, vol. 48, no. 3, pp. 543–568. DOI: 10.1249/MSS.0000000000000852
45. Thomas D.T., Erdman K.A., Burke L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Medicine and Science in Sports and Exercise, 2016, vol. 48 (3), pp. 543–568. DOI: 10.1249/MSS.0000000000000852
46. Vergauwen L.I.E.V.E.N., Brouns F.R.E.D., Hespel P. Carbohydrate Supplementation Improves Stroke Performance in Tennis. Medicine and Science in Sports and Exercise, 1998, vol. 30, no. 8, pp. 1289–1295. DOI: 10.1097/ 00005768-199808000-00017
47. Wilkinson D.J., Smeeton N.J., Watt P.W. Ammonia Metabolism, the Brain and Fatigue; Revisiting the Link. Progress in Neurobiology, 2010, vol. 91, no. 3, pp. 200–219. DOI: 10.1016/j.pneurobio.2010.01.012
48. Zimmer P., Stritt C., Bloch W., Schmidt F.P. The Effects of Different Aerobic Exercise Intensities on Serum Serotonin Concentrations and Their Association with Stroop Task Performance: a Randomized Controlled Trial. European Journal of Applied Physiology, 2016, vol. 116, no. 10, pp. 2025–2034. DOI: 10.1007/s00421-016-3456-1
Copyright (c) 2022 Человек. Спорт. Медицина
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.