ВЗАИМОСВЯЗЬ ФУНКЦИОНАЛЬНОЙ, СИЛОВОЙ И ТЕХНИЧЕСКОЙ ПОДГОТОВЛЕННОСТИ ЭЛИТНЫХ ПЛОВЦОВ НА ДИСТАНЦИИ 200 МЕТРОВ В БОЛЬШОМ ТРЕНИРОВОЧНОМ ЦИКЛЕ

  • С. В. Колмогоров Северный (Арктический) федеральный университет имени М.В. Ломоносова, Архангельск, Россия https://orcid.org/0000-0002-9339-500X svkolmogorov@yandex.ru
  • А. Р. Воронцов Университет Бата, Бат, Великобритания https://orcid.org/0000-0002-6666-0920 a.r.vorontsov52@gmail.com
  • О. А. Румянцева Северный (Арктический) федеральный университет имени М.В. Ломоносова, Архангельск, Россия https://orcid.org/0000-0003-4337-3870 o.rumyantseva@narfu.ru
Ключевые слова: мощность активного метаболизма, механическая и продвигающая эффективность, скорость плавания

Аннотация

Цель исследования: совершенствование процесса подготовки пловцов на средние дистанции на основании регулярного и взаимосвязанного анализа количественных критериев изучаемых сторон подготовленности. Материалы и методы. Принимали участие 4 элитных пловца мужского пола, которые специализировались в различных спортивных способах и входили в число 20 спортсменов мирового рейтинга на дистанции 200 м. Использовался комплекс методов, специально ориентированных на определение изучаемых метаболических и биомеханических показателей. Результаты. В анализируемые периоды цикла подготовки к ЧЕ по плаванию 2015 года в 25-метровом бассейне в ступенчатом тесте 8×200 м основным способом плавания происходит лонгитудинальный сдвиг метаболической кривой, направленность которого в первую очередь зависит от реализованной индивидуальной тренировочной программы. Анализ показателей скорости плавания на последней ступени теста, проведенный на основании математической модели изучаемого процесса, показал, что изменения объема, интенсивности и содержания тренировочной работы в различные периоды тренировочного цикла приводят к целенаправленной, жестко взаимосвязанной и иногда существенной динамике текущих уровней подготовленности. В то же время у трех спортсменов, которые успешно выступили на соревнованиях ЧЕ на дистанции 200 м вольным стилем, кролем на спине и брассом, количественные критерии специальной подготовленности на последней ступени теста в фазе сужения находятся в определенном диапазоне, характерном для данной дистанции. Мощность активного метаболизма находится в диапазоне 2035–2497 Вт, коэффициент механической эффективности – 0,063–0,072, коэффициент продвигающей эффективности – 0,69–0,73. Заключение. Основным фактором успешного выступления спортсменов на главных соревнованиях в цикле подготовки является оптимальная сбалансированность в фазе сужения индивидуальных количественных критериев анализируемых сторон подготовленности.

Информация об авторах

С. В. Колмогоров , Северный (Арктический) федеральный университет имени М.В. Ломоносова, Архангельск, Россия

Доктор биологических наук, профессор, профессор кафедры спортивных дисциплин, Северный (Арктический) федеральный университет имени М.В. Ломоносова. Россия, 163002, Архангельск, набережная Северной Двины, д. 17.

А. Р. Воронцов , Университет Бата, Бат, Великобритания

Кандидат педагогических наук, доцент, главный тренер университета по плаванию, Университет Бата, Бат, Великобритания.

О. А. Румянцева , Северный (Арктический) федеральный университет имени М.В. Ломоносова, Архангельск, Россия

Кандидат педагогических наук, доцент, зав. кафедрой спортивных дисциплин, Северный (Арктический) федеральный университет имени М.В. Ломоносова. Россия, 163002, Архангельск, набережная Северной Двины, д. 17.

Литература

1. Sacilotto G.B., Ball N., Mason B.R. A Biomechanical Review of the Techniques Used to Estimate or Measure Resistive Forces in Swimming. Journal Appl Biomech, 2014, vol. 30, pp. 119–127. DOI: 10.1123/jab.2013-0046
2. Toussaint H.M. Biomechanical Aspects of Peak Performance in Human Swimming. Animal Biology, 2005, vol. 55, pp. 17–40. DOI: 10.1163/1570756053276907
3. Ribeiro J., de Jesus K., Vilas-Boas J.P. et al. Biophysical Determinants of Front Crawl Swimming at Moderate and Severe Intensities. Int Journal Sports Physiology Performance, 2017, vol. 12 (2), pp. 241–246. DOI: 10.1123/ijspp.2015-0766
4. Schuller T., Hoffmann U., Iglesias X. et al. Concurrent Validity of a New Model for Estimating Peak Oxygen Uptake Based on Post-Exercise Measurements and Heart Rate Kinetics in Swimming. Proceedings of the XII International Symposium on Biomechanics and Medicine in Swimming (BMS), 2014, pp. 506–511.
5. Hazrati P., Mason B.R., Sinclair P.J. et al. Contribution of Uncertainty in Estimation of Active Drag Using Assisted Towing Method in Front Crawl Swimming. Journal Sport Science, 2018, vol. 36 (1), pp. 7–13. DOI: 10.1080/02640414.2016.1276295
6. Narita K., Nakashima M., Takagi H. Developing a Methodology for Estimating the Drag in Front Crawl Swimming at Various Velocities. Journal Biomech, 2017, vol. 54, pp. 123–128. DOI: 10.1016/j.jbiomech.2017.01.037
7. Ogita F., Yamanaka D., Yotani K., Tamaki H. Effects of Specific Resistance Training in Swimming on Drag, Propulsive Power and Propelling Efficiency. Proceedings of the XIII BMS, 2018, pp. 305–309.
8. Ogita F. Energetic in Competitive Swimming and its Application for Training. Proceedings of the X BMS, 2006, pp. 117–121.
9. Capelli C., Pendergast D.R., Termin B. Energetics of Swimming at Maximal Speeds in Humans. European Journal Appl Physiology, 1998, vol. 78, pp. 385–393. DOI: 10.1007/s004210050435
10. Zamparo P., Capelli C., Pendergast D. Energetics of Swimming: a Historical Perspective. European Journal Appl Physiology, 2011, vol. 111, pp. 367–378. DOI: 10.1007/s00421-010-1433-7
11. Kolmogorov S.V. Kinematic and Dynamic Characteristics of Steady-State Non-Stationary Motion of Elite Swimmers. Russian Journal of Biomechanics, 2008, vol. 12 (4), pp. 56–70.
12. Gatta G., Cortesi M., Swaine I., Zamparo P. Mechanical Power, Thrust Power and Propelling Efficiency: Relationships with Elite Sprint Swimming Performance. Journal Sport Science, 2017, vol. 36 (4), pp. 1–7. DOI: 10.1080/02640414.2017.1322214
13. Weber S., Hellard P., Rodríguez F.A., Mader A. Metabolic Profiling in Elite Swimmers ‒ Testing in the Pool to Determine Aerobic and Glycolytic Capacities. Proceedings 18th FINA World Sports Medicine Congress, 2016, pp. 243–251.
14. Morais J.E., Silva A.J., Marinho D.A. et al. Modelling the Relationship between Biomechanics and Performance of Young Sprinting Swimmers. European Journal Sport Science, 2016, vol. 16 (6), pp. 1–8. DOI: 10.1080/17461391.2016.1149227
15. Olbrecht J. The Science of Swinning: Planning, Periodizing and Optimizing Swim Training. Antwerpen: F&G Partners, 2007. 282 p.
16. Bentley D.J., Roels B., Hellard P. et al. Physiological Responses During Submaximal Interval Swimming Training: Effects of Interval Duration. Journal Science Medical Sport, 2005, vol. 8 (4), pp. 392–402. DOI: 10.1016/S1440-2440(05)80054-4
17. Seifert L., Schnitzler Ch., Bideault G. et al. Relationships between Coordination, Active Drag and Propelling Efficiency in Crawl. Human Movement Science, 2015, vol. 39, pp. 55–64. DOI: 10.1016/j.humov.2014.10.009
18. Hellard P., Rodriguez F.A., Pyne D.B. et al. Simulated Physiological Responses During Interval Training Based on a Mathematical Model in an Olympic Champion. Proceedings of the XIII BMS, 2018, pp. 264–273.
19. Hay H.G., do Carmo J. Swimming Techniques Used in the Flume Differ from Those Used in a Pool. Proceedings XV Congress of the International Society of Biomechanics, 1995, pp. 372–373.
20. Wilson B., Takagi H., Pease D. Technique Comparison of Pool and Flume Swimming. Proceedings of the VIII BMS, 1999, pp. 181–184.
21. Zamparo P., Cortesi M., Gatta G. The Energy Cost of Swimming and its Determinants. European Journal Appl Physiology, 2020, vol. 120, pp. 41–66. DOI: 10.1007/s00421-019-04270-y
22. Kolmogorov S.V., Vorontsov A.R., Vilas-Boas J.P. Metabolic Power, Active Drag, Mechanical and Propelling Efficiency of Elite Swimmers at 100 Meter Events in Different Competitive Swimming Techniques. Appl Science, 2021, vol. 11, p. 8511. DOI: 10.3390/app11188511
23. Greenshields J.T., Skutnik B.C., Stickels C.M. et al. Validation of a Single Repetition Test to Measure Swimming Power. Proceedings of the XIII BMS, 2018, pp. 255–259.
24. Zacca R., Lopes A., Teixeira B. et al. VO2 Assessed by Backward Extrapolation in 200, 400, 800, and 1500 m front Crawl in Youth Swimmers. Proceedings of the XII BMS, 2014, pp. 530–536.
25. Sousa A.C., Vilas-Boas J.P., Fernandes R.J., Figueiredo P. VO2 at Maximal and Supramaximal Intensities: Lessons to High Interval Training in Swimming. Int Journal Sports Physiology Performance, 2016, vol. 12 (7), pp. 872–877. DOI: 10.1123/ijspp.2016-0475

References

1. Sacilotto G.B., Ball N., Mason B.R. A Biomechanical Review of the Techniques Used to Estimate or Measure Resistive Forces in Swimming. Journal Appl Biomech, 2014, vol. 30, pp. 119–127. DOI: 10.1123/jab.2013-0046
2. Toussaint H.M. Biomechanical Aspects of Peak Performance in Human Swimming. Animal Biology, 2005, vol. 55, pp. 17–40. DOI: 10.1163/1570756053276907
3. Ribeiro J., de Jesus K., Vilas-Boas J.P. et al. Biophysical Determinants of Front Crawl Swimming at Moderate and Severe Intensities. Int Journal Sports Physiology Performance, 2017, vol. 12 (2), pp. 241–246. DOI: 10.1123/ijspp.2015-0766
4. Schuller T., Hoffmann U., Iglesias X. et al. Concurrent Validity of a New Model for Estimating Peak Oxygen Uptake Based on Post-Exercise Measurements and Heart Rate Kinetics in Swimming. Proceedings of the XII International Symposium on Biomechanics and Medicine in Swimming (BMS), 2014, pp. 506–511.
5. Hazrati P., Mason B.R., Sinclair P.J. et al. Contribution of Uncertainty in Estimation of Active Drag Using Assisted Towing Method in Front Crawl Swimming. Journal Sport Science, 2018, vol. 36 (1), pp. 7–13. DOI: 10.1080/02640414.2016.1276295
6. Narita K., Nakashima M., Takagi H. Developing a Methodology for Estimating the Drag in Front Crawl Swimming at Various Velocities. Journal Biomech, 2017, vol. 54, pp. 123–128. DOI: 10.1016/j.jbiomech.2017.01.037
7. Ogita F., Yamanaka D., Yotani K., Tamaki H. Effects of Specific Resistance Training in Swimming on Drag, Propulsive Power and Propelling Efficiency. Proceedings of the XIII BMS, 2018, pp. 305–309.
8. Ogita F. Energetic in Competitive Swimming and its Application for Training. Proceedings of the X BMS, 2006, pp. 117–121.
9. Capelli C., Pendergast D.R., Termin B. Energetics of Swimming at Maximal Speeds in Humans. European Journal Appl Physiology, 1998, vol. 78, pp. 385–393. DOI: 10.1007/s004210050435
10. Zamparo P., Capelli C., Pendergast D. Energetics of Swimming: a Historical Perspective. European Journal Appl Physiology, 2011, vol. 111, pp. 367–378. DOI: 10.1007/s00421-010-1433-7
11. Kolmogorov S.V. Kinematic and Dynamic Characteristics of Steady-State Non-Stationary Motion of Elite Swimmers. Russian Journal of Biomechanics, 2008, vol. 12 (4), pp. 56–70.
12. Gatta G., Cortesi M., Swaine I., Zamparo P. Mechanical Power, Thrust Power and Propelling Efficiency: Relationships with Elite Sprint Swimming Performance. Journal Sport Science, 2017, vol. 36 (4), pp. 1–7. DOI: 10.1080/02640414.2017.1322214
13. Weber S., Hellard P., Rodríguez F.A., Mader A. Metabolic Profiling in Elite Swimmers ‒ Testing in the Pool to Determine Aerobic and Glycolytic Capacities. Proceedings 18th FINA World Sports Medicine Congress, 2016, pp. 243–251.
14. Morais J.E., Silva A.J., Marinho D.A. et al. Modelling the Relationship between Biomechanics and Performance of Young Sprinting Swimmers. European Journal Sport Science, 2016, vol. 16 (6), pp. 1–8. DOI: 10.1080/17461391.2016.1149227
15. Olbrecht J. The Science of Swinning: Planning, Periodizing and Optimizing Swim Training. Antwerpen: F&G Partners, 2007. 282 p.
16. Bentley D.J., Roels B., Hellard P. et al. Physiological Responses During Submaximal Interval Swimming Training: Effects of Interval Duration. Journal Science Medical Sport, 2005, vol. 8 (4), pp. 392–402. DOI: 10.1016/S1440-2440(05)80054-4
17. Seifert L., Schnitzler Ch., Bideault G. et al. Relationships between Coordination, Active Drag and Propelling Efficiency in Crawl. Human Movement Science, 2015, vol. 39, pp. 55–64. DOI: 10.1016/j.humov.2014.10.009
18. Hellard P., Rodriguez F.A., Pyne D.B. et al. Simulated Physiological Responses During Interval Training Based on a Mathematical Model in an Olympic Champion. Proceedings of the XIII BMS, 2018, pp. 264–273.
19. Hay H.G., do Carmo J. Swimming Techniques Used in the Flume Differ from Those Used in a Pool. Proceedings XV Congress of the International Society of Biomechanics, 1995, pp. 372–373.
20. Wilson B., Takagi H., Pease D. Technique Comparison of Pool and Flume Swimming. Proceedings of the VIII BMS, 1999, pp. 181–184.
21. Zamparo P., Cortesi M., Gatta G. The Energy Cost of Swimming and its Determinants. European Journal Appl Physiology, 2020, vol. 120, pp. 41–66. DOI: 10.1007/s00421-019-04270-y
22. Kolmogorov S.V., Vorontsov A.R., Vilas-Boas J.P. Metabolic Power, Active Drag, Mechanical and Propelling Efficiency of Elite Swimmers at 100 Meter Events in Different Competitive Swimming Techniques. Appl Science, 2021, vol. 11, p. 8511. DOI: 10.3390/app11188511
23. Greenshields J.T., Skutnik B.C., Stickels C.M. et al. Validation of a Single Repetition Test to Measure Swimming Power. Proceedings of the XIII BMS, 2018, pp. 255–259.
24. Zacca R., Lopes A., Teixeira B. et al. VO2 Assessed by Backward Extrapolation in 200, 400, 800, and 1500 m front Crawl in Youth Swimmers. Proceedings of the XII BMS, 2014, pp. 530–536.
25. Sousa A.C., Vilas-Boas J.P., Fernandes R.J., Figueiredo P. VO2 at Maximal and Supramaximal Intensities: Lessons to High Interval Training in Swimming. Int Journal Sports Physiology Performance, 2016, vol. 12 (7), pp. 872–877. DOI: 10.1123/ijspp.2016-0475
Опубликован
2022-12-16
Как цитировать
Колмогоров, С., Воронцов, А., & Румянцева, О. (2022). ВЗАИМОСВЯЗЬ ФУНКЦИОНАЛЬНОЙ, СИЛОВОЙ И ТЕХНИЧЕСКОЙ ПОДГОТОВЛЕННОСТИ ЭЛИТНЫХ ПЛОВЦОВ НА ДИСТАНЦИИ 200 МЕТРОВ В БОЛЬШОМ ТРЕНИРОВОЧНОМ ЦИКЛЕ. Человек. Спорт. Медицина, 22(3), 102-111. https://doi.org/10.14529/hsm220312
Раздел
Спортивная тренировка