ИРИСИН КАК ПОСРЕДНИК И МАРКЕР ПОЗИТИВНЫХ ЭФФЕКТОВ ФИЗИЧЕСКОЙ АКТИВНОСТИ: ФИЗИОЛОГИЧЕСКИЕ ОСНОВЫ МЕТОДОВ РЕАБИЛИТАЦИИ
Аннотация
Цель: проанализировать данные литературы о механизмах действия ирисина, регуляции и возможных методах стимуляции секреции. Методы исследования. Анализ публикаций за последние 5 лет баз данных PubMed и eLibrary.ru. Результаты. Показаны аутокринные и паракринные эффекты ирисина на мышцы и эндокринные эффекты на другие органы. В целом ирисин поддерживает баланс между мышечной, костной и жировой тканями, оказывает противодиабетическое действие и препятствует ожирению, когнитивным и сосудистым нарушениям, сопровождающим уменьшение мышечной массы при недостатке физической активности (ФА). Продемонстрированы возможности детекции ирисина как маркера саркопении. Учитывая данные о регуляции секреции ирисина, разрабатываются технологии стимуляции его синтеза, доступные при вынужденном дефиците ФА. Среди них – сбалансированное питание, альтернативные виды тренировок, электроакупунктура, температурные воздействия. Большой интерес вызывают методы прогревания ввиду достаточной теоретической базы их применения. Заключение. Ирисин оказывает множественные долгосрочные положительные эффекты у здоровых людей и при патологии. Физиологически обосновано использование методов реабилитации для стимуляции секреции ирисина, причем тепловые воздействия эффективны как в сочетании с ФА, так и без нее.
Литература
2. Boström P., Wu J., Jedrychowski M.P. et al. A PGC1-α-dependent Myokine that Drives Brown-fat-like Development of White Fat and Thermogenesis. Nature, 2012, vol. 481, no. 7382, pp. 463–468. DOI: 10.1038/nature10777
3. Chen W., Wang L., You W., Shan T. Myokines Mediate the Cross Talk between Skeletal Muscle and Other Organs. Journal of Cellular Physiology, 2021, vol. 236, no. 4, pp. 2393–2412. DOI: 10.1002/jcp.30033
4. Chen Z., Zhang Y., Zhao F. et al. Recombinant Irisin Prevents the Reduction of Osteoblast Differentiation Induced by Stimulated Microgravity through Increasing β-Catenin Expression. International Journal of Molecular Sciences, 2020, vol. 21 (4), p. 1259. DOI: 10.3390/ijms21041259
5. Colucci S., Colaianni G., Brunetti G. et al. Irisin Prevents Microgravity-induced Impairment of Osteoblast Differentiation in Vitro During the Space Flight CRS-14 Mission. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2020, vol. 34, no. 8, pp. 10096–10106. DOI: 10.1096/fj.202000216R
6. D'Amuri A., Sanz J.M., Lazzer S. et al. Irisin Attenuates Muscle Impairment during Bed Rest through Muscle-Adipose Tissue Crosstalk. Biology (Basel), 2022, vol. 11 (7), p. 999. DOI: 10.3390/ biology11070999
7. Domin R., Dadej D., Pytka M. et al. Effect of Various Exercise Regimens on Selected Exercise-Induced Cytokines in Healthy People. International Journal of Environmental Research and Public Health, 2021, vol. 18 (3), p. 1261. DOI: 10.3390/ijerph18031261
8. Dos Santos J.M., Taiar R., Ribeiro V.G.C. et al. Whole-Body Vibration Training on Oxidative Stress Markers, Irisin Levels, and Body Composition in Women with Fibromyalgia: A Randomized Controlled Trial. Bioengineering (Basel), 2023, vol. 10 (2), p. 260. DOI: 10.3390/bioengineering10020260
9. Glazachev O.S., Zapara M.A., Kryzhanovskaya S.Y. et al. Whole-body Repeated Hyper-thermia Increases Irisin and Brain-derived Neurotrophic Factor: A Randomized Controlled Trial. Journal of Thermal Biology, 2021, vol. 101, p. 103067. DOI: 10.1016/j.jtherbio.2021.103067
10. Guo M., Yao J., Li J. et al. Irisin Ameliorates Age-associated Sarcopenia and Metabolic Dysfunction. Journal of Cachexia, Sarcopenia and Muscle, 2023, vol. 14, no. 1, pp. 391–405. DOI: 10.1002/jcsm.13141
11. Hafen P.S., Abbott K., Bowden J. et al. Daily Heat Treatment Maintains Mitochondrial Function and Attenuates Atrophy in Human Skeletal Muscle Subjected to Immobilization. Journal of Applied Physiology, 2019, vol. 127, no. 1, pp. 47–57. DOI: 10.1152/japplphysiol.01098.2018
12. Jiang S., Bae J.H., Wang Y., Song W. The Potential Roles of Myokines in Adipose Tissue Metabolism with Exercise and Cold Exposure. International Journal of Molecular Sciences, 2022, vol. 23 (19), p. 11523. DOI: 10.3390/ijms231911523
13. Jo D., Yoon G., Kim O.Y., Song J. A New Paradigm in Sarcopenia: Cognitive Impairment Caused by Imbalanced Myokine Secretion and Vascular Dysfunction. Biomedicine & Pharma-cotherapy, 2022, vol. 147, p. 112636. DOI: 10.1016/j.biopha.2022.112636
14. Khajebishak Y., Faghfouri A.H., Soleimani A. et al. The Potential Relationship between Serum Irisin Concentration with Inflammatory Cytokines, Oxidative Stress Biomarkers, Glycemic Indices and Lipid Profiles in Obese Patients with Type 2 Diabetes Mellitus: A Pilot Study. Journal of the ASEAN Federation of Endocrine Societies, 2023, vol. 38, no. 1, pp. 45–51. DOI: 10.15605/jafes.038.01.13
15. Kim H., Wrann C.D., Jedrychowski M. et al. Irisin Mediates Effects on Bone and Fat via αV Integrin Receptors. Cell, 2018, vol. 175, no. 7, pp. 1756–1768. DOI: 10.1016/j.cell.2018.10.025
16. Kim K., Monroe J.C., Gavin T. P., Roseguini B.T. Skeletal Muscle Adaptations to Heat Therapy. Journal of Applied Physiology, 2020, vol. 128, no. 6, pp. 1635–1642. DOI: 10.1152/ japplphysiol.00061.2020
17. Krämer A.I., Handschin C. How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1α in the Regulation of Metabolism. Molecular Sciences, 2019, vol. 20, p. 5449. DOI: 10.3390/ijms20215449
18. Lage V.K.D.S., de Paula F.A., Lima L.P. et al. Plasma Levels of Myokines and Inflammatory Markers are Related with Functional and Respiratory Performance in Older Adults with COPD and Sarcopenia. Experimental Gerontology, 2022, vol. 164, p. 111834. DOI: 10.1016/j.exger.2022.111834
19. Li G., Jian Z., Wang H. et al. Irisin Promotes Osteogenesis by Modulating Oxidative Stress and Mitophagy through SIRT3 Signaling under Diabetic Conditions. Oxidative Medicine and Cellular Longevity, 2022, vol. 10, 3319056. DOI: 10.1155/2022/3319056
20. Liang H., Qi W., Jiajue R. et al. Serum Irisin Level is Associated with Fall Risk, Uscle Strength, and Cortical Porosity in Postmenopausal Women. Frontiers in Endocrinology, 2023, vol. 14, 1096950. DOI: 10.3389/fendo.2023.1096950
21. Liao Q., Qu S., Tang L.X. et al. Irisin Exerts a Therapeutic Effect Against Myocardial Infarction via Promoting Angiogenesis. Acta Pharmacologica Sinica, 2019, vol. 40, no. 10, pp. 1314–1321. DOI: 10.1038/s41401-019-0230-z
22. Liu L., Zhang Q., Li M. et al. Early Post-Stroke Electroacupuncture Promotes Motor Function Recovery in Post-Ischemic Rats by Increasing the Blood and Brain Irisin. Neuropsychiatric Disease and Treatment, 2021, vol. 17, pp. 695–702. DOI: 10.2147/NDT.S290148
23. Ma C., Ding H., Deng Y. et al. Irisin: A New Code Uncover the Relationship of Skeletal Muscle and Cardiovascular Health During Exercise. Frontiers in Physiology, 2021, vol. 12, p. 620608. DOI: 10.3389/fphys.2021.620608
24. Ma E.B., Sahar N.E., Jeon g M., Huh J.Y. Irisin Exerts Inhibitory Effect on Adipogenesis Through Regulation of Wnt Signaling. Frontiers in Physiology, 2019, vol. 10, p. 1085. DOI: 10.3389/fphys.2019.01085
25. Maak S., Norheim F., Drevon C.A., Erickson H.P. Progress and Challenges in the Biology of FNDC5 and Irisin. Endocrine Reviews, 2021, vol. 42, no. 4, pp. 436–456. DOI: 10.1210/endrev/bnab003
26. McCormick J.J., King K.E., Notley S.R. et al. Exercise in the Heat Induces Similar Elevations in Serum Irisin in Young and Older Men Despite Lower Resting Irisin Concentrations in Older Adults. Journal of Thermal Biology, 2022, vol. 104, p. 103189. DOI: 10.1016/j.jtherbio.2022.103189
27. McCormick J.J., Notley S.R., Yardley J.E. et al. Blunted Circulating Irisin in Adults with Type 1 Diabetes During Aerobic Exercise in a hot Environment: a Pilot Study. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolism, 2020, vol. 45, no. 6, pp. 679–682. DOI: 10.1139/apnm-2019-0624
28. Missaglia S., Tommasini E., Vago P. et al. Salivary and Serum Irisin in Healthy Adults before and After Exercise. European Journal of Translational Myology, 2023, vol. 33 (1), p. 11093. DOI: 10.4081/ejtm.2023.11093
29. Ozbay S., Ulupınar S., Şebin E., Altınkaynak K. Acute and Chronic Effects of Aerobic Exercise on Serum Irisin, Adropin, and Cholesterol Levels in the Winter Season: Indoor Training Versus Outdoor Training. The Chinese Journal of Physiology, 2020, vol. 63, no. 1, pp. 21–26. DOI: 10.4103/CJP.CJP_84_19
30. Pazokian F., Amani-Shalamzari S., Rajabi H. Effects of Functional Training with Blood Occlusion on the Irisin, Follistatin, and Myostatin Myokines in Elderly Men. European Review of Aging and Physical Activity, 2022, vol. 19, p. 22. DOI: 10.1186/s11556-022-00303-2
31. Pesce M., Fratta I.L., Paolucci T. et al. From Exercise to Cognitive Performance: Role of Irisin. Applied Sciences, 2021, vol. 11, p. 7120. DOI: 10.3390/app11157120
32. Planella-Farrugia C., Comas F., Sabater-Masdeu M. et al. Circulating Irisin and Myostatin as Markers of Muscle Strength and Physical Condition in Elderly Subjects. Frontiers in Physiology, 2019, vol. 10, p. 871. DOI: 10.3389/fphys.2019.00871
33. Sanesi L., Storlino G., Dicarlo M. et al. Time-dependent Unloading Effects on Muscle and Bone and Involvement of FNDC5/irisin Axis. NPJ Microgravity, 2023, vol. 9 (1), p. 4. DOI: 10.1038/s41526-023-00251-w
34. Velez L.M., Van C., Moore T. et al. Genetic Variation of Putative Myokine Signaling is Dominated by Biological Sex and Sex Hormones. Elife, 2022, vol. 11, e76887. DOI: 10.7554/eLife.76887
35. Waseem R., Shamsi A., Mohammad T. et al. FNDC5/Irisin: Physiology and Pathophysiology. Molecules, 2022, vol. 27 (3), p. 1118. DOI: 10.3390/molecules27031118
36. Ye X., Shen Y., Ni C. et al. Irisin Reverses Insulin Resistance in C2C12 Cells via the p38-MAPK-PGC-1α Pathway. Peptides, 2019, vol. 11, 170120. DOI: 10.1016/j.peptides.2019.170120
37. Yu Q., Li G., Li J. et al. Irisin Protects Cerebral Neurons from Hypoxia/Reoxygenation via Suppression of Apoptosis and Expression of Pro-Inflammatory Cytokines. Neuroimmunomodulation, 2022, vol. 29, no. 4, pp. 425–432. DOI: 10.1159/000524273
38. Zhu J., Li J., Yao T. et al. Analysis of the Role of Irisin Receptor Signaling in Regulating Osteogenic/adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Biotechnology & Genetic Engineering Reviews, 2023, vol. 1–24. DOI: 10.1080/02648725.2023.2197713
References
1. Abu Shelbayeh O., Arroum T., Morris S., Busch K.B. PGC-1α Is a Master Regulator of Mitochondrial Lifecycle and ROS Stress Response. Antioxidants (Basel), 2023, vol. 12 (5), p. 1075. DOI: 10.3390/antiox120510752. Boström P., Wu J., Jedrychowski M.P. et al. A PGC1-α-dependent Myokine that Drives Brown-fat-like Development of White Fat and Thermogenesis. Nature, 2012, vol. 481, no. 7382, pp. 463–468. DOI: 10.1038/nature10777
3. Chen W., Wang L., You W., Shan T. Myokines Mediate the Cross Talk between Skeletal Muscle and Other Organs. Journal of Cellular Physiology, 2021, vol. 236, no. 4, pp. 2393–2412. DOI: 10.1002/jcp.30033
4. Chen Z., Zhang Y., Zhao F. et al. Recombinant Irisin Prevents the Reduction of Osteoblast Differentiation Induced by Stimulated Microgravity through Increasing β-Catenin Expression. International Journal of Molecular Sciences, 2020, vol. 21 (4), p. 1259. DOI: 10.3390/ijms21041259
5. Colucci S., Colaianni G., Brunetti G. et al. Irisin Prevents Microgravity-induced Impairment of Osteoblast Differentiation in Vitro During the Space Flight CRS-14 Mission. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2020, vol. 34, no. 8, pp. 10096–10106. DOI: 10.1096/fj.202000216R
6. D'Amuri A., Sanz J.M., Lazzer S. et al. Irisin Attenuates Muscle Impairment during Bed Rest through Muscle-Adipose Tissue Crosstalk. Biology (Basel), 2022, vol. 11 (7), p. 999. DOI: 10.3390/ biology11070999
7. Domin R., Dadej D., Pytka M. et al. Effect of Various Exercise Regimens on Selected Exercise-Induced Cytokines in Healthy People. International Journal of Environmental Research and Public Health, 2021, vol. 18 (3), p. 1261. DOI: 10.3390/ijerph18031261
8. Dos Santos J.M., Taiar R., Ribeiro V.G.C. et al. Whole-Body Vibration Training on Oxidative Stress Markers, Irisin Levels, and Body Composition in Women with Fibromyalgia: A Randomized Controlled Trial. Bioengineering (Basel), 2023, vol. 10 (2), p. 260. DOI: 10.3390/bioengineering10020260
9. Glazachev O.S., Zapara M.A., Kryzhanovskaya S.Y. et al. Whole-body Repeated Hyper-thermia Increases Irisin and Brain-derived Neurotrophic Factor: A Randomized Controlled Trial. Journal of Thermal Biology, 2021, vol. 101, p. 103067. DOI: 10.1016/j.jtherbio.2021.103067
10. Guo M., Yao J., Li J. et al. Irisin Ameliorates Age-associated Sarcopenia and Metabolic Dysfunction. Journal of Cachexia, Sarcopenia and Muscle, 2023, vol. 14, no. 1, pp. 391–405. DOI: 10.1002/jcsm.13141
11. Hafen P.S., Abbott K., Bowden J. et al. Daily Heat Treatment Maintains Mitochondrial Function and Attenuates Atrophy in Human Skeletal Muscle Subjected to Immobilization. Journal of Applied Physiology, 2019, vol. 127, no. 1, pp. 47–57. DOI: 10.1152/japplphysiol.01098.2018
12. Jiang S., Bae J.H., Wang Y., Song W. The Potential Roles of Myokines in Adipose Tissue Metabolism with Exercise and Cold Exposure. International Journal of Molecular Sciences, 2022, vol. 23 (19), p. 11523. DOI: 10.3390/ijms231911523
13. Jo D., Yoon G., Kim O.Y., Song J. A New Paradigm in Sarcopenia: Cognitive Impairment Caused by Imbalanced Myokine Secretion and Vascular Dysfunction. Biomedicine & Pharma-cotherapy, 2022, vol. 147, p. 112636. DOI: 10.1016/j.biopha.2022.112636
14. Khajebishak Y., Faghfouri A.H., Soleimani A. et al. The Potential Relationship between Serum Irisin Concentration with Inflammatory Cytokines, Oxidative Stress Biomarkers, Glycemic Indices and Lipid Profiles in Obese Patients with Type 2 Diabetes Mellitus: A Pilot Study. Journal of the ASEAN Federation of Endocrine Societies, 2023, vol. 38, no. 1, pp. 45–51. DOI: 10.15605/jafes.038.01.13
15. Kim H., Wrann C.D., Jedrychowski M. et al. Irisin Mediates Effects on Bone and Fat via αV Integrin Receptors. Cell, 2018, vol. 175, no. 7, pp. 1756–1768. DOI: 10.1016/j.cell.2018.10.025
16. Kim K., Monroe J.C., Gavin T. P., Roseguini B.T. Skeletal Muscle Adaptations to Heat Therapy. Journal of Applied Physiology, 2020, vol. 128, no. 6, pp. 1635–1642. DOI: 10.1152/ japplphysiol.00061.2020
17. Krämer A.I., Handschin C. How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1α in the Regulation of Metabolism. Molecular Sciences, 2019, vol. 20, p. 5449. DOI: 10.3390/ijms20215449
18. Lage V.K.D.S., de Paula F.A., Lima L.P. et al. Plasma Levels of Myokines and Inflammatory Markers are Related with Functional and Respiratory Performance in Older Adults with COPD and Sarcopenia. Experimental Gerontology, 2022, vol. 164, p. 111834. DOI: 10.1016/j.exger.2022.111834
19. Li G., Jian Z., Wang H. et al. Irisin Promotes Osteogenesis by Modulating Oxidative Stress and Mitophagy through SIRT3 Signaling under Diabetic Conditions. Oxidative Medicine and Cellular Longevity, 2022, vol. 10, 3319056. DOI: 10.1155/2022/3319056
20. Liang H., Qi W., Jiajue R. et al. Serum Irisin Level is Associated with Fall Risk, Uscle Strength, and Cortical Porosity in Postmenopausal Women. Frontiers in Endocrinology, 2023, vol. 14, 1096950. DOI: 10.3389/fendo.2023.1096950
21. Liao Q., Qu S., Tang L.X. et al. Irisin Exerts a Therapeutic Effect Against Myocardial Infarction via Promoting Angiogenesis. Acta Pharmacologica Sinica, 2019, vol. 40, no. 10, pp. 1314–1321. DOI: 10.1038/s41401-019-0230-z
22. Liu L., Zhang Q., Li M. et al. Early Post-Stroke Electroacupuncture Promotes Motor Function Recovery in Post-Ischemic Rats by Increasing the Blood and Brain Irisin. Neuropsychiatric Disease and Treatment, 2021, vol. 17, pp. 695–702. DOI: 10.2147/NDT.S290148
23. Ma C., Ding H., Deng Y. et al. Irisin: A New Code Uncover the Relationship of Skeletal Muscle and Cardiovascular Health During Exercise. Frontiers in Physiology, 2021, vol. 12, p. 620608. DOI: 10.3389/fphys.2021.620608
24. Ma E.B., Sahar N.E., Jeon g M., Huh J.Y. Irisin Exerts Inhibitory Effect on Adipogenesis Through Regulation of Wnt Signaling. Frontiers in Physiology, 2019, vol. 10, p. 1085. DOI: 10.3389/fphys.2019.01085
25. Maak S., Norheim F., Drevon C.A., Erickson H.P. Progress and Challenges in the Biology of FNDC5 and Irisin. Endocrine Reviews, 2021, vol. 42, no. 4, pp. 436–456. DOI: 10.1210/endrev/bnab003
26. McCormick J.J., King K.E., Notley S.R. et al. Exercise in the Heat Induces Similar Elevations in Serum Irisin in Young and Older Men Despite Lower Resting Irisin Concentrations in Older Adults. Journal of Thermal Biology, 2022, vol. 104, p. 103189. DOI: 10.1016/j.jtherbio.2022.103189
27. McCormick J.J., Notley S.R., Yardley J.E. et al. Blunted Circulating Irisin in Adults with Type 1 Diabetes During Aerobic Exercise in a hot Environment: a Pilot Study. Applied Physiology, Nutrition, and Metabolism = Physiologie Appliquee, Nutrition et Metabolism, 2020, vol. 45, no. 6, pp. 679–682. DOI: 10.1139/apnm-2019-0624
28. Missaglia S., Tommasini E., Vago P. et al. Salivary and Serum Irisin in Healthy Adults before and After Exercise. European Journal of Translational Myology, 2023, vol. 33 (1), p. 11093. DOI: 10.4081/ejtm.2023.11093
29. Ozbay S., Ulupınar S., Şebin E., Altınkaynak K. Acute and Chronic Effects of Aerobic Exercise on Serum Irisin, Adropin, and Cholesterol Levels in the Winter Season: Indoor Training Versus Outdoor Training. The Chinese Journal of Physiology, 2020, vol. 63, no. 1, pp. 21–26. DOI: 10.4103/CJP.CJP_84_19
30. Pazokian F., Amani-Shalamzari S., Rajabi H. Effects of Functional Training with Blood Occlusion on the Irisin, Follistatin, and Myostatin Myokines in Elderly Men. European Review of Aging and Physical Activity, 2022, vol. 19, p. 22. DOI: 10.1186/s11556-022-00303-2
31. Pesce M., Fratta I.L., Paolucci T. et al. From Exercise to Cognitive Performance: Role of Irisin. Applied Sciences, 2021, vol. 11, p. 7120. DOI: 10.3390/app11157120
32. Planella-Farrugia C., Comas F., Sabater-Masdeu M. et al. Circulating Irisin and Myostatin as Markers of Muscle Strength and Physical Condition in Elderly Subjects. Frontiers in Physiology, 2019, vol. 10, p. 871. DOI: 10.3389/fphys.2019.00871
33. Sanesi L., Storlino G., Dicarlo M. et al. Time-dependent Unloading Effects on Muscle and Bone and Involvement of FNDC5/irisin Axis. NPJ Microgravity, 2023, vol. 9 (1), p. 4. DOI: 10.1038/s41526-023-00251-w
34. Velez L.M., Van C., Moore T. et al. Genetic Variation of Putative Myokine Signaling is Dominated by Biological Sex and Sex Hormones. Elife, 2022, vol. 11, e76887. DOI: 10.7554/eLife.76887
35. Waseem R., Shamsi A., Mohammad T. et al. FNDC5/Irisin: Physiology and Pathophysiology. Molecules, 2022, vol. 27 (3), p. 1118. DOI: 10.3390/molecules27031118
36. Ye X., Shen Y., Ni C. et al. Irisin Reverses Insulin Resistance in C2C12 Cells via the p38-MAPK-PGC-1α Pathway. Peptides, 2019, vol. 11, 170120. DOI: 10.1016/j.peptides.2019.170120
37. Yu Q., Li G., Li J. et al. Irisin Protects Cerebral Neurons from Hypoxia/Reoxygenation via Suppression of Apoptosis and Expression of Pro-Inflammatory Cytokines. Neuroimmunomodulation, 2022, vol. 29, no. 4, pp. 425–432. DOI: 10.1159/000524273
38. Zhu J., Li J., Yao T. et al. Analysis of the Role of Irisin Receptor Signaling in Regulating Osteogenic/adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Biotechnology & Genetic Engineering Reviews, 2023, vol. 1–24. DOI: 10.1080/02648725.2023.2197713
Copyright (c) 2024 Человек. Спорт. Медицина
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.