ПОВЫШЕННАЯ ВАРИАБЕЛЬНОСТЬ СЕРДЕЧНОГО РИТМА У ГРЕБЦОВ АССОЦИИРОВАНА С АЛЛЕЛЯМИ UCP2 55VAL И UCP3 –55T

  • А. С. Бобылев Ярославский государственный педагогический университет им. К.Д. Ушинского, г. Ярославль, Россия https://orcid.org/0000-0003-4145-2030 teki086artem@mail.ru
  • А. А. Мельников Череповецкий государственный университет, г. Череповец, Россия; Российский государственный университет физической культуры, спорта, молодежи и туризма (ГЦОЛИФК), г. Москва, Россия https://orcid.org/0000-0001-5281-5306 meln1974@yandex.ru
  • О. Б. Подоляка Череповецкий государственный университет, г. Череповец, Россия https://orcid.org/0000-0001-5606-1409 obpodoliaka@chsu.ru
  • Р. Ю. Николаев Рыбинский государственный авиационный технический университет имени П.А. Соловьева, г. Рыбинск, Россия https://orcid.org/0000-0001-5480-3229 nikolaev.r.u@yandex.ru
Ключевые слова: вариабельность сердечного ритма, полиморфизмы генов разобщающих белков, спортсмены

Аннотация

Цель: изучение роли полиморфизмов Ala55Val гена UCP2 (rs660339 C/T) и –55С/Т гена UCP3 (rs1800849) в модуляции ВСР у спортсменов-гребцов. Материалы и методы. Показатели ВСР (SDNN, HF, LF, VLF), ударный и сердечный индексы определены с по­мощью кардиореографии в положении лежа и стоя у гребцов (n = 35, возраст: 18,4 ± 1,9 года, стаж занятий: 6,3 ± 3,3 года, МПК: 59,0 ± 12,2 мл/мин/кг). Максимальное потребление кис­лорода (МПК) регистрировали на гребном эргометре с помощью газоанализатора (MetaLyzer Cortex). Полиморфизмы UCP2 Ala55Val (rs660339) и UCP3 –55C/T (rs1800849) в ДНК буккального эпителия анализировали методом полимеразной цепной реакции и анализом длин продуктов рестрикции. Результаты. Установлено, что полиморфизм UCP2 Ala55Val был ассоциирован с МПК и спектральными показателями ВСР в положении лежа. У спортсменов с генотипом UCP2 Val/Val уровни МПК и HF были выше, а отношение LF/HF – ниже, чем у лиц с генотипами Ala/Ala и Ala/Val. Кроме того, полиморфизм UCP3 –55C/T ассоциировался с показателями ВСР в положении лежа и более существенно – в ортостазе. У спортсменов с генотипом UCP3 Т/T уровни МПК, HF и VLF в положении стоя были выше, чем у носителей генотипа С/С. Заключение. Генетические полиморфизмы UCP2 Ala55Val и UCP3 –55C/T, вероятно, вовлечены в автономную регуляцию сердца. Аллели UCP2 55Val и UCP3 –55Т могут, по крайней мере частично, отвечать за повышенную ВСР у высокотренированных спортсменов.

Информация об авторах

А. С. Бобылев , Ярославский государственный педагогический университет им. К.Д. Ушинского, г. Ярославль, Россия

Аспирант кафедры физического воспитания, Ярославский государственный педагогический университет им. К.Д. Ушинского. 150000, г. Ярославль

А. А. Мельников , Череповецкий государственный университет, г. Череповец, Россия; Российский государственный университет физической культуры, спорта, молодежи и туризма (ГЦОЛИФК), г. Москва, Россия

Доктор биологических наук, профессор кафедры физкультурно-оздоровительных технологий, Череповецкий государственный университет. 162600, Вологодская обл., г. Череповец; профессор кафедры физиологии, Российский государственный университет физической культуры, спорта, молодёжи и туризма. 105122, г. Москва

О. Б. Подоляка , Череповецкий государственный университет, г. Череповец, Россия

Кандидат педагогических наук, доцент, заведующий кафедрой физкультурно-оздоровительных технологий, Череповецкий государственный университет. 162600, Вологодская обл., г. Череповец

Р. Ю. Николаев , Рыбинский государственный авиационный технический университет имени П.А. Соловьева, г. Рыбинск, Россия

Кандидат биологических наук, заведующий кафедрой физической культуры, Рыбинский государственный авиационный технический университет имени П.А. Соловьева. 152934, г. Рыбинск

Литература

1. Использование молекулярно-генетических методов для прогноза аэробных и анаэробных возможностей у спортсменов / И.И. Ахметов, Д.В. Попов, И.В. Астратенкова и др. // Физиология человека. – 2008. – Т. 34, № 3. – С. 86–91.
2. Полиморфизм гена UCP2 реципрокно ассоциирован с аэробной а анаэробной производительностью у спортсменов / Э.А. Бондарева, О.И. Парфентьева, А.В. Козлов и др. // Физиология человека. – 2018. – Т. 44, № 6. –
С. 79–86.
3. Association of UCP2 and UCP3 polymorphisms with heart rate variability in Japanese men / T. Matsunaga, N. Gu, H. Yamazaki et al. // J. Hypertens. – 2009. – Vol. 27. – P. 305–313.
4. Bouillaud, F. UCPs, at the interface between bioenergetics and metabolism / F. Bouillaud, M.C. Alves-Guerra, D. Ricquier // Biochim. Biophys. Acta. – 2016. – Vol. 1863. – P. 2443–2456.
5. Danson, E.J. Reactive oxygen species and autonomic regulation of cardiac excitability / E.J. Danson, D.J. Paterson // J. Cardiovasc. Electrophysiol. – 2006. – Vol. 17. – P. 104–112.
6. Genetic influences on heart rate variability / S. Golosheykin, J.D. Grant, O.V. Novak et al. // Int. J. Psychophysiol. – 2017. – Vol. 115. – P. 65–73.
7. Heart rate variability indexes as a marker of chronic adaptation in athletes: a systematic review / V.P. Da Silva, N.A. de Oliveira, H. Silveira et al. // Ann. Noninvasive Electrocardiol. – 2015. – Vol. 20. – P. 108–118.
8. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology / A.J. Camm, J.T. Bigger, G. Breithardt et al. // Circulation. – 1996. – Vol. 93, № 5. – P. 1043–1065.
9. Heritability of cardiac vagal control in 24-h heart rate variability recordings: influence of ceiling effects at low heart rates / M. Neijts, R. Van Lien, N. Kupper et al. // Psychophysiology. – 2014. – Vol. 51. – P. 1023–1036.
10. Impact of gender on the cardiac autonomic response to angiotensin 2 in healthy humans / M.C. Mann, D.V. Exner, B.R. Hemmelgarn et al. // J. Appl. Physiol (1985). – 2012. – Vol. 112. – P. 1001–1007.
11. Low Heart Rate Variability and Sympathetic Dominance Modifies the Association Between Insulin Resistance and Metabolic Syndrome – The Toon Health Study / I. Saito, K. Maruyama, E. Eguchi et al. // Circ. J. – 2017. – Vol. 81. – P. 1447–1453.
12. Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins / M.D. Brand, C. Affourtit, T.C. Esteves et al. // Free Radic. Biol. Med. – 2004. – Vol. 37. – P. 755–767.
13. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies / S.S. Dhamrait, C. Maubaret, U. Pedersen-Bjergaard et al. // Inside. Cell. – 2016. – Vol. 1. – P. 70–81.
14. Monitoring Athletic Training Status Through Autonomic Heart Rate Regulation: A Systematic Review and Meta-Analysis / C.R. Bellenger, J.T. Fuller, R.L. Thomson et al. // Sports Med. – 2016. – Vol. 46. – P. 1461–1486.
15. Novel uncoupling proteins / C. Affourtit, P.G. Crichton, N. Parker et al. // Novartis. Found Symp. – 2007. – Vol. 287. – P. 70–80.
16. Rance, K.A. Plasma leptin levels are related to body composition, sex, insulin levels and the A55V polymorphism of the UCP2 gene / K.A. Rance, A.M. Johnstone, S. Murison // Int. J. Obes. (Lond). – 2007. – Vol. 31. – P. 1311–1318.
17. The association between the val/ala-55 polymorphism of the uncoupling protein 2 gene and exercise efficiency / B. Buemann, B. Schierning, S. Toubro et al. // Int. J. Obes. Relat. Metab. Disord. – 2001. – Vol. 25. – P. 467–471.
18. Uncoupling protein-2 polymorphisms in type 2 diabetes, obesity, and insulin secretion / H. Wang, W.S. Chu, T. Lu et al. // Am. J. Physiol. Endocrinol. Metab. – 2004. – Vol. 286. – P. 1–7.
19. Uusitalo, A.L. Heart rate and blood pressure variability during heavy training and overtraining in the female athlete / A.L. Uusitalo, A.J. Uusitalo, H.K. Rusko // Int. J. Sports Med. – 2000. – Vol. 21. – P. 45–53.
20. Van De Wielle, R. Longitudinal Associations of Leptin and Adiponectin with Heart Rate Variability in Children / R. Van De Wielle, N. Michels // Front. Physiol. – 2017. – Vol. 8. – P. 498. DOI: 10.3389/fphys.2017.00498
21. Vimaleswaran, K.S. Uncoupling protein 2 and 3 gene polymorphisms and their association with type 2 diabetes in asian indians / K.S. Vimaleswaran, V. Radha, S. Ghosh // Diabetes Technol. Ther. – 2011. – Vol. 13. – P. 19–25.

References

1. Akhmetov I.I., Popov D.V., Astratenkova I.V. et al. [The Use of Molecular Genetic Methods for Predicting Aerobic and Anaerobic Capabilities in Athletes]. Fiziologiya cheloveka [Human Physiology], 2008, vol. 34, no. 3, pp. 86–91. (in Russ.) DOI: 10.1134/S0362119708030110
2. Bondareva E.A., Parfent’yeva O.I., Kozlov A.V. et al. [Polymorphism of the UCP2 Gene is Reciprocally Associated with Aerobic and Anaerobic Performance in Athletes]. Fiziologiya cheloveka [Human Physiology], 2018, vol. 44, no. 6, pp. 79–86. (in Russ.) DOI: 10.1134/S036211971806004X
3. Matsunaga T., Gu N., Yamazaki H. et al. Association of UCP2 and UCP3 Polymorphisms with Heart Rate Variability in Japanese Men. J. Hypertens., 2009, vol. 27, pp. 305–313. DOI: 10.1097/HJH.0b013e32831ac967
4. Bouillaud F., Alves-Guerra M.C., Ricquier D. UCPs, at the Interface Between Bioenergetics and Metabolism. Biochim. Biophys. Acta., 2016, vol. 1863, pp. 2443–2456. DOI: 10.1016/j.bbamcr.2016.04.013
5. Danson E.J., Paterson D.J. Reactive Oxygen Species and Autonomic Regulation of Cardiac Excitability. J. Cardiovasc. Electrophysiol., 2006, vol. 17, pp. 104–112. DOI: 10.1111/j.1540-8167.2006.00391.x
6. Golosheykin S., Grant J.D., Novak O.V. et al. Genetic Influences on Heart Rate Variability. Int. J. Psychophysiol., 2017, vol. 115, pp. 65–73. DOI: 10.1016/j.ijpsycho.2016.04.008
7. Da Silva V.P., de Oliveira N.A., Silveira H. et al. Heart Rate Variability Indexes as a Marker of Chronic Adaptation in Athletes: a Systematic Review. Ann. Noninvasive Electrocardiol., 2015, vol. 20, pp. 108–118. DOI: 10.1111/anec.12237
8. Camm A.J., Bigger J.T., Breithardt G. et al. Heart Rate Variability: Standards of Measurement, Physiological Interpretation and Clinical Use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation, 1996, vol. 93, no. 5, pp. 1043–1065. DOI: 10.1161/01.CIR.93.5.1043
9. Neijts M., Van Lien R., Kupper N. et al. Heritability of Cardiac Vagal Control in 24-h Heart Rate Variability Recordings: Influence of Ceiling Effects at Low Heart Rates. Psychophysiology, 2014, vol. 51, pp. 1023–1036. DOI: 10.1111/psyp.12246
10. Mann M.C., Exner D.V., Hemmelgarn B.R. et al. Impact of Gender on the Cardiac Auto-nomic Response to Angiotensin 2 in Healthy Humans. J. Appl. Physiol (1985), 2012, vol. 112, pp. 1001–1007. DOI: 10.1152/japplphysiol.01207.2011
11. Saito I., Maruyama K., Eguchi E. et al. Low Heart Rate Variability and Sympathetic Dominance Modifies the Association Between Insulin Resistance and Metabolic Syndrome – The Toon Health Study. Circ. J., 2017, vol. 81, pp. 1447–1453. DOI: 10.1253/circj.CJ-17-0192
12. Brand M.D., Affourtit C., Esteves T.C. et al. Mitochondrial Superoxide: Production, Biological Effects, and Activation of Uncoupling Proteins. Free Radic. Biol. Med., 2004, vol. 37, pp. 755–767. DOI: 10.1016/j.freeradbiomed.2004.05.034
13. Dhamrait S.S., Maubaret C., Pedersen-Bjergaard U. et al. Mitochondrial Uncoupling Pro-teins Regulate Angiotensin-Converting Enzyme Expression: Crosstalk Between Cellular and Endocrine Metabolic Regulators Suggested by RNA Interference and Genetic Studies. Inside. Cell., 2016, vol. 1, pp. 70–81. DOI: 10.1002/icl3.1019
14. Bellenger C.R., Fuller J.T., Thomson R.L. et al. Monitoring Athletic Training Status through Autonomic Heart Rate Regulation: A Systematic Review and Meta-Analysis. Sports Med., 2016, vol. 46, pp. 1461–1486. DOI: 10.1007/s40279-016-0484-2
15. Affourtit C., Crichton P.G., Parker N. et al. Novel Uncoupling Proteins. Novartis. Found Symp., 2007, vol. 287, pp. 70–80. DOI: 10.1002/9780470725207.ch6
16. Rance K.A., Johnstone A.M., Murison S. Plasma Leptin Levels are Related to Body Composition, Sex, Insulin Levels and the A55V Polymorphism of the UCP2 Gene. Int. J. Obes. (Lond), 2007, vol. 31, pp. 1311–1318. DOI: 10.1038/sj.ijo.0803535
17. Buemann B., Schierning B., Toubro S. et al. The Association Between the val/ala-55 Polymorphism of the Uncoupling Protein 2 Gene and Exercise Efficiency. Int. J. Obes. Relat. Metab. Disord., 2001, vol. 25, pp. 467–471. DOI: 10.1038/sj.ijo.0801564
18. Wang H., Chu W.S., Lu T. et al. Uncoupling Protein-2 Polymorphisms in Type 2 Diabetes, Obesity, and Insulin Secretion. Am. J. Physiol. Endocrinol. Metab., 2004, vol. 286, pp. 1–7. DOI: 10.1152/ajpendo.00231.2003
19. Uusitalo A.L., Uusitalo A.J., Rusko H.K. Heart Rate and Blood Pressure Variability During Heavy Training and Overtraining in the Female Athlete. Int. J. Sports Med., 2000, vol. 21, pp. 45–53. DOI: 10.1055/s-2000-8853
20. Van De Wielle R., Michels N. Longitudinal Associations of Leptin and Adiponectin with Heart Rate Variability in Children. Front. Physiol., 2017, vol. 8, p. 498. DOI: 10.3389/fphys.2017.00498
21. Vimaleswaran K.S., Radha V., Ghosh S. Uncoupling Protein 2 and 3 Gene Polymorphisms and Their Association with Type 2 Diabetes in Asian Indians. Diabetes Technol. Ther., 2011, vol. 13, pp. 19–25. DOI: 10.1089/dia.2010.0091
Опубликован
2021-12-21
Как цитировать
Бобылев, А., Мельников, А., Подоляка, О., & Николаев, Р. (2021). ПОВЫШЕННАЯ ВАРИАБЕЛЬНОСТЬ СЕРДЕЧНОГО РИТМА У ГРЕБЦОВ АССОЦИИРОВАНА С АЛЛЕЛЯМИ UCP2 55VAL И UCP3 –55T. Человек. Спорт. Медицина, 21(3), 56-63. https://doi.org/10.14529/hsm210307
Раздел
Физиология