ОБ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ ЛЕЙКОЦИТАРНЫХ ИНДЕКСОВ В ДИАГНОСТИКЕ ИММУННЫХ НАРУШЕНИЙ У СПОРТСМЕНОВ (ОБЗОР ЛИТЕРАТУРЫ)

  • Э. Н. Трушина Федеральный исследовательский центр питания, биотехнологии и безопасности пищи, Москва, Россия https://orcid.org/0000-0002-0035-3629 trushina@ion.ru
  • О. К. Мустафина Федеральный исследовательский центр питания, биотехнологии и безопасности пищи, Москва, Россия https://orcid.org/0000-0001-7231-9377 mustafina@ion.ru
Ключевые слова: лейкоцитарные индексы, клеточный иммунитет, спортсмены

Аннотация

Цель: проанализировать результаты исследований по характеристике лейкоцитарных индексов, используемых в спортивной медицине, и оценить их значимость в качестве маркеров нарушения иммунного статуса и перетренированности у спортсменов. Материалы и методы. Поиск литературных источников осуществляли в интернет-ресурсе PubMed, а также использовали базы данных Scopus и Web of Science. Сайты издательств Springer и Elsevier использовали для доступа к полному тексту статей. В обзор включали источники информации (обзоры и оригинальные статьи), в которых освещались вопросы изучения гематологического профиля у спортсменов при различных физических нагрузках. Результаты. В обзоре представлены материалы исследований, посвященных определению гематологических маркеров нарушения иммунного статуса спортсменов после интенсивных физических нагрузок. Предложено использование интегративных и информативных по оценке состояния спортсмена в различные периоды тренировочной и соревновательной деятельности лейкоцитарных индексов: соотношение нейтрофилов (гранулоцитов) к лимфоцитам (NLR или GLR), соотношение моноцитов к лимфоцитам (МLR), соотношение тромбоцитов к лимфоцитам (PLR) и системный индекс иммунного воспаления (SII = NLR × тромбоциты). Системный индекс иммунного воспаления используется в клинической практике в качестве прогностического маркера при воспалительных процессах различной этиологии. Заключение. Гематологические лейкоцитарные индексы могут служить маркерами нарушения иммунного статуса и перетренированности у спортсменов и являются эффективным, недорогим и легко воспроизводимым методом оценки.

Информация об авторах

Э. Н. Трушина , Федеральный исследовательский центр питания, биотехнологии и безопасности пищи, Москва, Россия

Кандидат медицинских наук, заведующий лабораторией иммунологии, Федеральный исследовательский центр питания, биотехнологии и безопасности пищи, Москва, Россия.

О. К. Мустафина , Федеральный исследовательский центр питания, биотехнологии и безопасности пищи, Москва, Россия

Кандидат медицинских наук, старший научный сотрудник лаборатории иммунологии, Федеральный исследовательский центр питания, биотехнологии и безопасности пищи, Москва, Россия.

Литература

1. Иванов, Д.О., Шабалов Н.П., Шабалова Н.Н. Лейкоцитарные индексы клеточной реактивности как показатель наличия гипо- и гиперэргического вариантов неонатального сепсиса // Новости Фармакотерапии. 2005. № 3. С. 62–69. [Ivanov D.O., Shabalov N.P., Shabalova N.N. [Leukocyte Indices of Cellular Reactivity as an Indicator of the Presence of Hypo- and Hyperergic Variants of Neonatal Sepsis]. Novosty Farmacotherapii [News of Pharmacotherapy], 2005, no. 3,
pp. 62–69. (in Russ.)]
2. Сакович А.Р. Гематологические лейкоцитарные индексы при остром гнойном синусите // Мед. журнал. 2012. Т. 42, № 4. С. 88–91. [Sakovich A.R. [Hematological Leukocyte Indices in Acute Purulent Sinusitis]. Meditsinski zhurnal [Medical Journal], 2012, vol. 42, no. 4, pp. 88–91. (in Russ.)]
3. Сакович А.Р., Перминов А.Б. Гематологические лейкоцитарные индексы при лорпатологии // Мед. журнал. 2014. № 2. С. 29–30. [Sakovich A.R., Perminov A.B. [Hematological Leukocyte Indices in ENT Pathology]. Meditsinski zhurnal [Medical Journal], 2014, no. 2, pp. 29–30. (in Russ.)]
4. Трищенкова С.Н. Интегральные гематологические показатели у спортсменов с хронической патологией глотки // Рос. оториноларингология. 2012. Т. 56, № 1. С. 166–168. [Trishchenkova S.N. [Integral Hematological Parameters in Athletes with Chronic Pathology of the Pharynx]. Rossiyskaya otorinolaringologiya [Russian Otorhinolaryngology], 2012, vol. 56 (1), pp. 166–168. (in Russ.)]
5. Трищенкова С.Н., Екимовских А.В., Егоров Г.Е. Интегральные гематологические показатели у спортсменов // Материалы I Всерос. конгресса «Медицина для спорта», 19–20 сент. 2011 г. – С. 36–38. [Trishchenkova S.N., Ekimovskikh A.V., Egorov G.E. [Integral Hematolog-ical Parameters in Athletes]. Materialy I Vserossiyskogo kongressa “Meditsina dlya sporta” [Materials of the I All-Russian Congress Medicine for Sports], 2011, pp. 36–38. (in Russ.)]
6. Podgórski T., Kryściak J., Pluta B. et al. A Practical Approach to Monitoring Biomarkers of Inflammation and Muscle Damage in Youth Soccer Players During a 6-Month Training Cycle. Journal Human Kinet., 2021, vol. 80, pp. 185–197. DOI: 10.2478/hukin-2021-0093
7. Campbell J.P., Riddell N.E., Burns V.E. et al. Acute Exercise Mobilises CD8+ T Lympho-cytes Exhibiting an Effector-Memory Phenotype. Brain, Behavior, and Immunity, 2009, vol. 23 (6), pp. 767–775. DOI: 10.1016/j.bbi.2009.02.011
8. Shinkai S., Shore S., Shek P.N., Shephard R.J. Acute Exercise and Immune Function. Relationship between Lymphocyte Activity and Changes in Subset Counts. International Journal of Sports Medicine, 1992, vol. 13 (6), pp. 452–461. DOI: 10.1055/s-2007-1021297
9. Wahl P., Mathes S., Bloch W., Zimmer P. Acute Impact of Recovery on the Restoration of Cellular Immunological Homeostasis. International Journal of Sports Medicine, 2020, vol. 41, pp. 12–20. DOI: 10.1055/a-1015-0453
10. Graff R.M., Kunz H.E. Agha/β 2-Adrenergic Receptor Signaling Mediates the Preferential Mobilization of Differentiated Subsets of CD8+ T-cells, NK-cells and Non-classical Monocytes in Response to Acute Exercise in Humans. Brain, Behavior, and Immunity, 2018, vol. 74, pp. 143–153. DOI: 10.1016/j.bbi.2018.08.017
11. Kruger K., Alack K., Ringseis R. et al. Apoptosis of T-cell Subsets After Acute High-Intensity Interval Exercise. Medicine & Science in Sports & Exercise, 2016, vol. 48 (10), pp. 2021–2029. DOI: 10.1249/MSS.0000000000000979
12. Joisten N., Walzik D., Schenk A. et al. Aqua Cycling for Immunological Recovery After Intensive, Eccentric Exercise. European Journal of Applied Physiology, 2019, vol. 119 (6), pp. 1369–1375. DOI: 10.1007/s00421-019-04127-4
13. Cadegiani F.A., Kater C.E. Novel Causes and Consequences of Overtraining Syndrome: the EROS-DISRUPTORS Study. BMC Sports Science Medicine Rehabilitation, 2019, vol. 11, p. 21. DOI: 10.1186/s13102-019-0132-x
14. Campbell J.P., Turner J.E. Debunking the Myth of Exercise-induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Frontiers in Immunology, 2018, vol. 9 (648), pp. 1–21. DOI: 10.3389/fimmu.2018.00648
15. Simpson R.J., Campbell J.P., Gleeson M. et al. Can Exercise Affect Immune Function to Increase Susceptibility to Infection? Exercise Immunology Review, 2020, vol. 26, pp. 8–22.
16. Schlagheck M.L., Walzik D., Joisten N. et al. Cellular Immune Response to Acute Exercise: Comparison of Endurance and Resistance Exercise. European Journal of Haematology, 2020, vol. 105 (1), pp. 75–84. DOI: 10.1111/ejh.13412
17. Romagnoli M., Sanchis-Gomar F., Alis R Risso-Ballester J. et al. Changes in Muscle Damage, Inflammation, and Fatigue-Related Parameters in Young Elite Soccer Players after a Match. Journal Sports Medicine Physical Fitness, 2016, vol. 56 (10), pp. 1198–1205.
18. Farjallah M.A., Ghattassi K., Ben Mahmoud L. et al. Effect of Nocturnal Melatonin Intake on Cellular Damage and Recovery from Repeated Sprint Performance During an Intensive Training Schedule. Chronobiology International, 2020, vol. 37, pp. 686−698. DOI: 10.1080/07420528.2020.1746797
19. Simpson R.J., Kunz H., Agha N., Graff R. Exercise and the Regulation of Immune Functions. Progress in Molecular Biology and Translational Science, 2015, vol. 135, pp. 355–380. DOI: 10.1016/bs.pmbts.2015.08.001
20. Turner J.E., Spielmann G., Wadley A.J. et al. Exercise-induced B Cell Mobilisation: Preliminary Evidence for an Influx of Immature Cells into the Bloodstream. Physiology & Behavior, 2016, vol. 164, pp. 376–382. DOI: 10.1016/j.physbeh.2016.06.023
21. Goh J., Behringer M. Exercise Alarms the Immune System: A HMGB1 Perspective. Cytokine, 2018, vol. 110, pp. 222–225. DOI: 10.1016/j.cyto.2018.06.031
22. Goh J., Lim C.L., Suzuki K. Effects of Endurance-, Strength-, and Concurrent Training on Cytokines and Inflammation. Schumann M., Rønnestad B.R., editors. Concurrent Aerobic and Strength Training. Springer; Basel, Switzerland, 2019, pp. 125–138. DOI: 10.1007/978-3-319-75547-2_9
23. Anđelković M., Baralić I., Đorđević B. et al. Hematological and Biochemical Parameters in Elite Soccer Players During a Competitive Half Season. Journal Medicine Biochemistry, 2015, vol. 34 (4), pp. 460–466. DOI: 10.2478/jomb-2014-0057
24. Cerqueira É., Marinho D.A., Neiva H.P., Lourenço O. Inflammatory Effects of High and Moderate Intensity Exercise – A Systematic Review. Frontiers in Physiology, 2020, vol. 10, p. 1550. DOI: 10.3389/fphys.2019.01550
25. Pedersen B.K., llum H. NK Cell Response to Physical Activity: Possible Mechanisms of Action. Medicine & Science in Sports & Exercise, 1994, vol. 26 (2), pp. 140–146. DOI: 10.1249/00005768-199402000-00003
26. Kurowski M., Seys S., Bonini M. et al. Physical Exercise, Immune Response, and Susceptibility to Infections-current Knowledge and Growing Research Areas. Allergy, 2022, vol. 77 (9), pp. 2653–2664. DOI: 10.1111/all.15328
27. Peake J.M., Neubauer O., Walsh N.P., Simpson R.J. Recovery of the Immune System After Exercise. Journal of Applied Physiology, 2017, vol. 122 (5), pp. 1077–1087. DOI: 10.1152/ japplphysiol.00622.2016
28. Becatti M., Mannucci A., Barygina V. et al. Redox Status Alterations During the Competitive Season in Élite Soccer Players: focus on Peripheral Leukocyte-Derived ROS. International Emergency Medicine, 2017, vol. 12 (6), pp. 777–788. DOI: 10.1007/s11739-017-1653-5
29. Shephard R.J. Adhesion Molecules, Catecholamines and Leucocyte Redistribution During and Following Exercise. American Journal of Sports Medicine, 2003, vol. 33 (4), pp. 261–284. DOI: 10.2165/00007256-200333040-00002
30. Shek P.N., Sabiston B.N., Buguet A., Radomski M.W. Strenuous Exercise and Immunological Changes: a Multiple-time-point Analysis of Leukocyte Subsets, CD4/CD8 Ratio, Immuno-globulin Production and NK Cell Response. International Journal of Sports Medicine, 1995, vol. 16 (7), pp. 466–474. DOI: 10.1055/s-2007-973039
31. Suzuki K., Hayashida H. Effect of Exercise Intensity on Cell-Mediated Immunity. Sports (Basel), 2021, vol. 9 (1), p. 8. DOI: 10.3390/sports9010008
32. Kakanis M.W., Peake J., Brenu E.W. et al. The Open Window of Susceptibility to Infection After Acute Exercise in Healthy Young Male Elite Athletes. Exercise Immunology Review, 2010, vol. 16, pp. 119–137.
33. Walzik D., Joisten N., Zacher J., Zimmer P. Transferring Clinically Established Immune Inflammation Markers into Exercise Physiology: Focus on Neutrophil-to-lymphocyte Ratio, Plate-let-to-lymphocyte Ratio and Systemic Immune-inflammation Index. European Journal of Applied Physiology, 2021, vol. 121 (7), pp. 1803–1814. DOI: 10.1007/s00421-021-04668-7
34. Clifford T., Wood M.J., Stocks P. et al. T-regulatory Cells Exhibit a Biphasic Response to Prolonged Endurance Exercise in Humans. European Journal of Applied Physiology, 2017, vol. 117 (8), pp. 1727–1737. DOI: 10.1007/s00421-017-3667-0
35. Yang D., Han Z., Oppenheim J.J. Alarmins and Immunity. Immunological Reviews, 2017, vol. 280, pp. 41–56. DOI: 10.1111/imr.12577

References

1. Иванов, Д.О., Шабалов Н.П., Шабалова Н.Н. Лейкоцитарные индексы клеточной реактивности как показатель наличия гипо- и гиперэргического вариантов неонатального сепсиса // Новости Фармакотерапии. 2005. № 3. С. 62–69. [Ivanov D.O., Shabalov N.P., Shabalova N.N. [Leukocyte Indices of Cellular Reactivity as an Indicator of the Presence of Hypo- and Hyperergic Variants of Neonatal Sepsis]. Novosty Farmacotherapii [News of Pharmacotherapy], 2005, no. 3,
pp. 62–69. (in Russ.)]
2. Сакович А.Р. Гематологические лейкоцитарные индексы при остром гнойном синусите // Мед. журнал. 2012. Т. 42, № 4. С. 88–91. [Sakovich A.R. [Hematological Leukocyte Indices in Acute Purulent Sinusitis]. Meditsinski zhurnal [Medical Journal], 2012, vol. 42, no. 4, pp. 88–91. (in Russ.)]
3. Сакович А.Р., Перминов А.Б. Гематологические лейкоцитарные индексы при лорпатологии // Мед. журнал. 2014. № 2. С. 29–30. [Sakovich A.R., Perminov A.B. [Hematological Leukocyte Indices in ENT Pathology]. Meditsinski zhurnal [Medical Journal], 2014, no. 2, pp. 29–30. (in Russ.)]
4. Трищенкова С.Н. Интегральные гематологические показатели у спортсменов с хронической патологией глотки // Рос. оториноларингология. 2012. Т. 56, № 1. С. 166–168. [Trishchenkova S.N. [Integral Hematological Parameters in Athletes with Chronic Pathology of the Pharynx]. Rossiyskaya otorinolaringologiya [Russian Otorhinolaryngology], 2012, vol. 56 (1), pp. 166–168. (in Russ.)]
5. Трищенкова С.Н., Екимовских А.В., Егоров Г.Е. Интегральные гематологические показатели у спортсменов // Материалы I Всерос. конгресса «Медицина для спорта», 19–20 сент. 2011 г. – С. 36–38. [Trishchenkova S.N., Ekimovskikh A.V., Egorov G.E. [Integral Hematolog-ical Parameters in Athletes]. Materialy I Vserossiyskogo kongressa “Meditsina dlya sporta” [Materials of the I All-Russian Congress Medicine for Sports], 2011, pp. 36–38. (in Russ.)]
6. Podgórski T., Kryściak J., Pluta B. et al. A Practical Approach to Monitoring Biomarkers of Inflammation and Muscle Damage in Youth Soccer Players During a 6-Month Training Cycle. Journal Human Kinet., 2021, vol. 80, pp. 185–197. DOI: 10.2478/hukin-2021-0093
7. Campbell J.P., Riddell N.E., Burns V.E. et al. Acute Exercise Mobilises CD8+ T Lympho-cytes Exhibiting an Effector-Memory Phenotype. Brain, Behavior, and Immunity, 2009, vol. 23 (6), pp. 767–775. DOI: 10.1016/j.bbi.2009.02.011
8. Shinkai S., Shore S., Shek P.N., Shephard R.J. Acute Exercise and Immune Function. Relationship between Lymphocyte Activity and Changes in Subset Counts. International Journal of Sports Medicine, 1992, vol. 13 (6), pp. 452–461. DOI: 10.1055/s-2007-1021297
9. Wahl P., Mathes S., Bloch W., Zimmer P. Acute Impact of Recovery on the Restoration of Cellular Immunological Homeostasis. International Journal of Sports Medicine, 2020, vol. 41, pp. 12–20. DOI: 10.1055/a-1015-0453
10. Graff R.M., Kunz H.E. Agha/β 2-Adrenergic Receptor Signaling Mediates the Preferential Mobilization of Differentiated Subsets of CD8+ T-cells, NK-cells and Non-classical Monocytes in Response to Acute Exercise in Humans. Brain, Behavior, and Immunity, 2018, vol. 74, pp. 143–153. DOI: 10.1016/j.bbi.2018.08.017
11. Kruger K., Alack K., Ringseis R. et al. Apoptosis of T-cell Subsets After Acute High-Intensity Interval Exercise. Medicine & Science in Sports & Exercise, 2016, vol. 48 (10), pp. 2021–2029. DOI: 10.1249/MSS.0000000000000979
12. Joisten N., Walzik D., Schenk A. et al. Aqua Cycling for Immunological Recovery After Intensive, Eccentric Exercise. European Journal of Applied Physiology, 2019, vol. 119 (6), pp. 1369–1375. DOI: 10.1007/s00421-019-04127-4
13. Cadegiani F.A., Kater C.E. Novel Causes and Consequences of Overtraining Syndrome: the EROS-DISRUPTORS Study. BMC Sports Science Medicine Rehabilitation, 2019, vol. 11, p. 21. DOI: 10.1186/s13102-019-0132-x
14. Campbell J.P., Turner J.E. Debunking the Myth of Exercise-induced Immune Suppression: Redefining the Impact of Exercise on Immunological Health Across the Lifespan. Frontiers in Immunology, 2018, vol. 9 (648), pp. 1–21. DOI: 10.3389/fimmu.2018.00648
15. Simpson R.J., Campbell J.P., Gleeson M. et al. Can Exercise Affect Immune Function to Increase Susceptibility to Infection? Exercise Immunology Review, 2020, vol. 26, pp. 8–22.
16. Schlagheck M.L., Walzik D., Joisten N. et al. Cellular Immune Response to Acute Exercise: Comparison of Endurance and Resistance Exercise. European Journal of Haematology, 2020, vol. 105 (1), pp. 75–84. DOI: 10.1111/ejh.13412
17. Romagnoli M., Sanchis-Gomar F., Alis R Risso-Ballester J. et al. Changes in Muscle Damage, Inflammation, and Fatigue-Related Parameters in Young Elite Soccer Players after a Match. Journal Sports Medicine Physical Fitness, 2016, vol. 56 (10), pp. 1198–1205.
18. Farjallah M.A., Ghattassi K., Ben Mahmoud L. et al. Effect of Nocturnal Melatonin Intake on Cellular Damage and Recovery from Repeated Sprint Performance During an Intensive Training Schedule. Chronobiology International, 2020, vol. 37, pp. 686−698. DOI: 10.1080/07420528.2020.1746797
19. Simpson R.J., Kunz H., Agha N., Graff R. Exercise and the Regulation of Immune Functions. Progress in Molecular Biology and Translational Science, 2015, vol. 135, pp. 355–380. DOI: 10.1016/bs.pmbts.2015.08.001
20. Turner J.E., Spielmann G., Wadley A.J. et al. Exercise-induced B Cell Mobilisation: Preliminary Evidence for an Influx of Immature Cells into the Bloodstream. Physiology & Behavior, 2016, vol. 164, pp. 376–382. DOI: 10.1016/j.physbeh.2016.06.023
21. Goh J., Behringer M. Exercise Alarms the Immune System: A HMGB1 Perspective. Cytokine, 2018, vol. 110, pp. 222–225. DOI: 10.1016/j.cyto.2018.06.031
22. Goh J., Lim C.L., Suzuki K. Effects of Endurance-, Strength-, and Concurrent Training on Cytokines and Inflammation. Schumann M., Rønnestad B.R., editors. Concurrent Aerobic and Strength Training. Springer; Basel, Switzerland, 2019, pp. 125–138. DOI: 10.1007/978-3-319-75547-2_9
23. Anđelković M., Baralić I., Đorđević B. et al. Hematological and Biochemical Parameters in Elite Soccer Players During a Competitive Half Season. Journal Medicine Biochemistry, 2015, vol. 34 (4), pp. 460–466. DOI: 10.2478/jomb-2014-0057
24. Cerqueira É., Marinho D.A., Neiva H.P., Lourenço O. Inflammatory Effects of High and Moderate Intensity Exercise – A Systematic Review. Frontiers in Physiology, 2020, vol. 10, p. 1550. DOI: 10.3389/fphys.2019.01550
25. Pedersen B.K., llum H. NK Cell Response to Physical Activity: Possible Mechanisms of Action. Medicine & Science in Sports & Exercise, 1994, vol. 26 (2), pp. 140–146. DOI: 10.1249/00005768-199402000-00003
26. Kurowski M., Seys S., Bonini M. et al. Physical Exercise, Immune Response, and Susceptibility to Infections-current Knowledge and Growing Research Areas. Allergy, 2022, vol. 77 (9), pp. 2653–2664. DOI: 10.1111/all.15328
27. Peake J.M., Neubauer O., Walsh N.P., Simpson R.J. Recovery of the Immune System After Exercise. Journal of Applied Physiology, 2017, vol. 122 (5), pp. 1077–1087. DOI: 10.1152/ japplphysiol.00622.2016
28. Becatti M., Mannucci A., Barygina V. et al. Redox Status Alterations During the Competitive Season in Élite Soccer Players: focus on Peripheral Leukocyte-Derived ROS. International Emergency Medicine, 2017, vol. 12 (6), pp. 777–788. DOI: 10.1007/s11739-017-1653-5
29. Shephard R.J. Adhesion Molecules, Catecholamines and Leucocyte Redistribution During and Following Exercise. American Journal of Sports Medicine, 2003, vol. 33 (4), pp. 261–284. DOI: 10.2165/00007256-200333040-00002
30. Shek P.N., Sabiston B.N., Buguet A., Radomski M.W. Strenuous Exercise and Immunological Changes: a Multiple-time-point Analysis of Leukocyte Subsets, CD4/CD8 Ratio, Immuno-globulin Production and NK Cell Response. International Journal of Sports Medicine, 1995, vol. 16 (7), pp. 466–474. DOI: 10.1055/s-2007-973039
31. Suzuki K., Hayashida H. Effect of Exercise Intensity on Cell-Mediated Immunity. Sports (Basel), 2021, vol. 9 (1), p. 8. DOI: 10.3390/sports9010008
32. Kakanis M.W., Peake J., Brenu E.W. et al. The Open Window of Susceptibility to Infection After Acute Exercise in Healthy Young Male Elite Athletes. Exercise Immunology Review, 2010, vol. 16, pp. 119–137.
33. Walzik D., Joisten N., Zacher J., Zimmer P. Transferring Clinically Established Immune Inflammation Markers into Exercise Physiology: Focus on Neutrophil-to-lymphocyte Ratio, Plate-let-to-lymphocyte Ratio and Systemic Immune-inflammation Index. European Journal of Applied Physiology, 2021, vol. 121 (7), pp. 1803–1814. DOI: 10.1007/s00421-021-04668-7
34. Clifford T., Wood M.J., Stocks P. et al. T-regulatory Cells Exhibit a Biphasic Response to Prolonged Endurance Exercise in Humans. European Journal of Applied Physiology, 2017, vol. 117 (8), pp. 1727–1737. DOI: 10.1007/s00421-017-3667-0
35. Yang D., Han Z., Oppenheim J.J. Alarmins and Immunity. Immunological Reviews, 2017, vol. 280, pp. 41–56. DOI: 10.1111/imr.12577
Опубликован
2024-01-19
Как цитировать
Трушина, Э., & Мустафина, О. (2024). ОБ ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ ЛЕЙКОЦИТАРНЫХ ИНДЕКСОВ В ДИАГНОСТИКЕ ИММУННЫХ НАРУШЕНИЙ У СПОРТСМЕНОВ (ОБЗОР ЛИТЕРАТУРЫ). Человек. Спорт. Медицина, 23(4), 40-46. https://doi.org/10.14529/hsm230405
Раздел
Физиология