ПРИМЕНЕНИЕ ЭКЗОСКЕЛЕТА РУКИ С ФУНКЦИЕЙ «ЗЕРКАЛЬНОГО ДВИЖЕНИЯ» В РЕАБИЛИТАЦИОННЫХ ЦЕЛЯХ

  • А. А. Петров Южно-Уральский государственный университет, г. Челябинск, Россия http://orcid.org/0000-0001-5072-2587 alex_petrov_2@mail.ru
  • А. С. Смирнов Южно-Уральский государственный университет, г. Челябинск, Россия http://orcid.org/0000-0002-9529-638X 2231034@mail.ru
  • В. В. Епишев Южно-Уральский государственный университет, г. Челябинск, Россия http://orcid.org/0000-0002-7284-7388 epishev74@mail.ru
  • А. В. Шевцов Национальный государственный университет физической культуры, спорта и здоровья имени П.Ф. Лесгафта, г. Санкт-Петербург, Россия http://orcid.org/0000-0002-9878-3378 sportmedi@mail.ru
Ключевые слова: Экзоскелет, движение, реабилитация

Аннотация

Цель. Разработать прототип экзоскелета руки, предназначенного для лечения проблем движения верхней конечности после кровоизлияния в мозг или инфаркта. Материалы и методы. Функция «зеркального движения» реализована с использованием манипуляционного устройства, включающего в себя три акселерометра GY-85, программное обеспечение, которое отслеживает углы перемещения, устройства для беспроводной передачи данных, контроллер Arduino и сервомоторы экзоскелета. Результаты. В ходе этого исследования был разработан прототип реабилитационного устройства. Устройство было протестировано на 6 добровольцах. Использование Arduino позволило сократить время отклика сервомоторов до 400 мс. Выводы. Если поражена только одна рука, в случае гемипареза / гемиплегии, то восстановительная терапия может проводиться в соответствии с указанной программой или путем копирования движений здоровой конечности путем «зеркального движения».

Литература

1. Ball S.J, Brown I., Scott S. Medarm: A Rehabilitation Robot with 5dof at the Shoulder Complex. Zurich: IEEE, 1–6, 2007.
2. Beer R.F., Dewald J.P., Dawson M.L., Rymer W.Z. Target-Dependent Differences Between Free and Constrained Arm Movements in Chronic Hemiparesis. Exp. Brain Res, 2004, vol. 156, pp. 458–470. DOI: 10.1007/s00221-003-1807-8
3. Bernstein N. The Coordination and Regulation of Movement. London: Pergamon Press, 1967, 196 p.
4. Blank A., O’Malley M.K., Francisco G.E., Contreras-Vidal G.L. A Pre-Clinical Framework for Neural Control of a Therapeutic Upper-Limb Exoskeleton. San Diego, CA: IEEE, 2013, pp. 1159–1162. DOI: 10.1109/NER.2013.6696144
5. Brackbill E.A., Mao Y., Agrawal S.K., Annapragada M., Dubey V.N. Dynamics and Control of a 4-dof Wearable Cable-Driven Upper Arm Exoskeleton. Kobe: IEEE, 2009, pp. 2300-2305. DOI: 10.1109/ROBOT.2009.5152545
6. Carignan C., Liszka M., Roderick S. Design of an Arm Exoskeleton with Scapula Motion for Shoulder Rehabilitation. Seattle, WA: IEEE, 2005, pp. 524–531. DOI: 10.1109/ICAR.2005.1507459
7. Carignan C., Tang J., Roderick S., Naylor M. A Configuration-Space Approach to Controlling a Rehabilitation Arm Exoskeleton. Noordwijk: IEEE, 2007, pp. 179–187. DOI: 10.1109/ICORR.2007.4428425
8. Culmer P.R., Jackson A.E., Makower S.G., Cozens J.A., Levesley M.C., Mon-Williams M. et al. A Novel Robotic System for Quantifying Arm Kinematics and Kinetics: Description and Evaluation in Therapist-Assisted Passive Arm Movements Post-Stroke. J. Neurosci. Methods, 2011, vol. 197, pp. 259–269. DOI: 10.1016/j.jneumeth.2011.03.004
9. DeJong G., Smout J., Horn D., Gassaway J., Maulden A. Timing of Initiation of Rehabilitation After Stroke. Arch. Phys. Med. Rehabil., 2015, vol. 86, pp. 34–40.
10. Ellis M.D., Drogos J., Carmona C., Keller T., Dewald J.P. Neck Rotation Modulates Flexion Synergy Torques, Indicating an Ipsilateral Reticulospinal Source for Impairment in Stroke. J. Neurophysiol, 2012, vol. 108, pp. 3096–3104. DOI: 10.1152/jn.01030.2011
11. Ellis M.D., Sukal T., DeMott T., Dewald J.P. Augmenting Clinical Evaluation of Hemiparetic Arm Movement with a Laboratory-Based Quantitative Measurement of Kinematics as a Function of Limb Loading. Neurorehabil. Neural Repair, 2008, vol. 22, pp. 321–329. DOI: 10.1177/1545968307313509
12. Fink M., Prada C., Wu F., Cassereau D. Self-Focusing with Time-Reversal Mirror in Inhomogeneous Media. Proc. IEEE Ultrason. Symp., 1989, pp. 681–686. DOI: 10.1109/ULTSYM.1989.67072
13. French A., Pehlivan U., O’Malley K. Current Trends in Robot-Assisted Upper-Limb Stroke Rehabilitation: Promoting Patient Engagement in Therapy. Curr Phys Med Rehabil Rep, 2014, vol. 2, pp. 184–195. DOI: 10.1007/s40141-014-0056-z
14. Galinski D., Sapin J., Dehez B. Optimal Design of an Alignment-Free Two-Dof Rehabilitation Robot for the Shoulder Complex. 2013 IEEE International Conference on Rehabilitation Robotics (ICORR) (IEEE), 2013, pp. 1–7. DOI: 10.1109/ICORR.2013.6650502
15. Klamroth-Marganska V., Blanco J., Campen K., Curt A., Dietz V., Ettlin T. et al. Three-Dimensional, Task-Specific Robot Therapy of the Arm After Stroke: a Multicentre, Parallel Group Randomised Trial. Lancet Neurol, 2014, vol. 13, pp. 159–166. DOI: 10.1016/S1474-4422(13)70305-3
16. Kwakkel G., Kollen B., Lindeman E. Understanding the Pattern of Functional Recovery after Stroke: Facts and Theories. Restor. Neurol. Neurosci., 2004, vol. 22, pp. 281–299.
17. Namdari S., Horneff J., Baldwin K., Keenan M. Muscle Releases to Improve Passive Motion and Relieve Pain in Patients with Spastic Hemiplegia and Elbow Flexion Contractures. J Shoulder Elbow Surg, 2012, vol. 21, pp. 1357–1362. DOI: 10.1016/j.jse.2011.09.029
18. Ramachandran V.S., Rogers-Ramachandran D., Cobb S. Touching the Phantom Limb. Nature, 1995, vol. 377, pp. 489–490. DOI: 10.1038/377489a0
19. Regenbrecht H.T., Franz E.A., McGregor G., Dixon B.G., Hoermann S. Be+yond the Looking Glass: Fooling the Brain with the Augmented Mirror Box. Presence, 2011, vol. 20, pp. 559–576. DOI: 10.1162/PRES_a_00082
20. Roby-Brami A., Jacobs S., Bennis N., Levin M.F. Hand Orientation for Grasping and Arm Joint Rotation Patterns in Healthy Subjects and Hemiparetic Stroke Patients. Brain Res, 2003, vol. 969, pp. 217–229. DOI: 10.1016/S0006-8993(03)02334-5
21. Salter R.B., Simmonds D.F., Malcolm B.W., Rumble E.J., MacMichael D., Clements N.D. The Biological Effect of Continuous Passive Motion on the Healing of Full-Thickness Defects in Articular Cartilage. An Experimental Investigation in the Rabbit. J Bone Joint Surg Am, 1980, vol. 62, pp. 1232–1251. DOI: 10.2106/00004623-198062080-00002
22. Shawn W.O., Giori J. Continuous Passive Motion (CPM): Theory and Principles of Clinical Application. J Rehabil Res Dev, 2000, vol. 37, pp. 179–188.
23. Song Z., Guo S., Pang M., Zhang S., Xiao N., Gao B., et al. Implementation of Resistance Training Using an Upper-Limb Exoskeleton Rehabilitation Device for Elbow Joint. J. Med. Biol. Eng, 2014, vol. 34, pp. 188–196. DOI: 10.5405/jmbe.1337
24. Sukal-Moulton T., Krosschell K.J., Gaebler-Spira D.J., Dewald J.P. Motor Impairment Factors Related to Brain Injury Timing in Early Hemiparesis. Part I: Expression of Upper-Extremity Weakness. Neurorehabil Neural Repair, 2014, vol. 28, pp. 13–23. DOI: 10.1177/1545968313500564
25. Ver C., Hofgart G., Menyhart L., Kardos L., Csiba L. Ankle-Foot Continuous Passive Motion Device for Mobilization of Acute Stroke Patients. OJTR, 2015, vol. 3, pp. 11–40. DOI: 10.4236/ojtr.2015.32004
26. Volpe B.T., Lynch D., Rykman-Berland A., Ferraro M., Galgano M., Hogan N. et al. Intensive Sensorimotor Arm Training Mediated by Therapist or Robot Improves Hemiparesis in Patients with Chronic Stroke. Neurorehabil. Neural Repair, 2008, vol. 22, pp. 305–310. DOI: 10.1177/1545968307311102
27. Zhang L.Q., Park H.S., Ren Y. Developing an Intelligent Robotic Arm for Stroke Rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics (IEEE), 2007, pp. 984–993. DOI: 10.1109/ICORR.2007.4428543

References

1. Ball S.J, Brown I., Scott S. Medarm: A Rehabilitation Robot with 5dof at the Shoulder Complex. Zurich: IEEE, 1–6, 2007.
2. Beer R.F., Dewald J.P., Dawson M.L., Rymer W.Z. Target-Dependent Differences Between Free and Constrained Arm Movements in Chronic Hemiparesis. Exp. Brain Res, 2004, vol. 156, pp. 458–470. DOI: 10.1007/s00221-003-1807-8
3. Bernstein N. The Coordination and Regulation of Movement. London: Pergamon Press, 1967, 196 p.
4. Blank A., O’Malley M.K., Francisco G.E., Contreras-Vidal G.L. A Pre-Clinical Framework for Neural Control of a Therapeutic Upper-Limb Exoskeleton. San Diego, CA: IEEE, 2013, pp. 1159–1162. DOI: 10.1109/NER.2013.6696144
5. Brackbill E.A., Mao Y., Agrawal S.K., Annapragada M., Dubey V.N. Dynamics and Control of a 4-dof Wearable Cable-Driven Upper Arm Exoskeleton. Kobe: IEEE, 2009, pp. 2300-2305. DOI: 10.1109/ROBOT.2009.5152545
6. Carignan C., Liszka M., Roderick S. Design of an Arm Exoskeleton with Scapula Motion for Shoulder Rehabilitation. Seattle, WA: IEEE, 2005, pp. 524–531. DOI: 10.1109/ICAR.2005.1507459
7. Carignan C., Tang J., Roderick S., Naylor M. A Configuration-Space Approach to Controlling a Rehabilitation Arm Exoskeleton. Noordwijk: IEEE, 2007, pp. 179–187. DOI: 10.1109/ICORR.2007.4428425
8. Culmer P.R., Jackson A.E., Makower S.G., Cozens J.A., Levesley M.C., Mon-Williams M. et al. A Novel Robotic System for Quantifying Arm Kinematics and Kinetics: Description and Evaluation in Therapist-Assisted Passive Arm Movements Post-Stroke. J. Neurosci. Methods, 2011, vol. 197, pp. 259–269. DOI: 10.1016/j.jneumeth.2011.03.004
9. DeJong G., Smout J., Horn D., Gassaway J., Maulden A. Timing of Initiation of Rehabilitation After Stroke. Arch. Phys. Med. Rehabil., 2015, vol. 86, pp. 34–40.
10. Ellis M.D., Drogos J., Carmona C., Keller T., Dewald J.P. Neck Rotation Modulates Flexion Synergy Torques, Indicating an Ipsilateral Reticulospinal Source for Impairment in Stroke. J. Neurophysiol, 2012, vol. 108, pp. 3096–3104. DOI: 10.1152/jn.01030.2011
11. Ellis M.D., Sukal T., DeMott T., Dewald J.P. Augmenting Clinical Evaluation of Hemiparetic Arm Movement with a Laboratory-Based Quantitative Measurement of Kinematics as a Function of Limb Loading. Neurorehabil. Neural Repair, 2008, vol. 22, pp. 321–329. DOI: 10.1177/1545968307313509
12. Fink M., Prada C., Wu F., Cassereau D. Self-Focusing with Time-Reversal Mirror in Inhomogeneous Media. Proc. IEEE Ultrason. Symp., 1989, pp. 681–686. DOI: 10.1109/ULTSYM.1989.67072
13. French A., Pehlivan U., O’Malley K. Current Trends in Robot-Assisted Upper-Limb Stroke Rehabilitation: Promoting Patient Engagement in Therapy. Curr Phys Med Rehabil Rep, 2014, vol. 2, pp. 184–195. DOI: 10.1007/s40141-014-0056-z
14. Galinski D., Sapin J., Dehez B. Optimal Design of an Alignment-Free Two-Dof Rehabilitation Robot for the Shoulder Complex. 2013 IEEE International Conference on Rehabilitation Robotics (ICORR) (IEEE), 2013, pp. 1–7. DOI: 10.1109/ICORR.2013.6650502
15. Klamroth-Marganska V., Blanco J., Campen K., Curt A., Dietz V., Ettlin T. et al. Three-Dimensional, Task-Specific Robot Therapy of the Arm After Stroke: a Multicentre, Parallel Group Randomised Trial. Lancet Neurol, 2014, vol. 13, pp. 159–166. DOI: 10.1016/S1474-4422(13)70305-3
16. Kwakkel G., Kollen B., Lindeman E. Understanding the Pattern of Functional Recovery after Stroke: Facts and Theories. Restor. Neurol. Neurosci., 2004, vol. 22, pp. 281–299.
17. Namdari S., Horneff J., Baldwin K., Keenan M. Muscle Releases to Improve Passive Motion and Relieve Pain in Patients with Spastic Hemiplegia and Elbow Flexion Contractures. J Shoulder Elbow Surg, 2012, vol. 21, pp. 1357–1362. DOI: 10.1016/j.jse.2011.09.029
18. Ramachandran V.S., Rogers-Ramachandran D., Cobb S. Touching the Phantom Limb. Nature, 1995, vol. 377, pp. 489–490. DOI: 10.1038/377489a0
19. Regenbrecht H.T., Franz E.A., McGregor G., Dixon B.G., Hoermann S. Be+yond the Looking Glass: Fooling the Brain with the Augmented Mirror Box. Presence, 2011, vol. 20, pp. 559–576. DOI: 10.1162/PRES_a_00082
20. Roby-Brami A., Jacobs S., Bennis N., Levin M.F. Hand Orientation for Grasping and Arm Joint Rotation Patterns in Healthy Subjects and Hemiparetic Stroke Patients. Brain Res, 2003, vol. 969, pp. 217–229. DOI: 10.1016/S0006-8993(03)02334-5
21. Salter R.B., Simmonds D.F., Malcolm B.W., Rumble E.J., MacMichael D., Clements N.D. The Biological Effect of Continuous Passive Motion on the Healing of Full-Thickness Defects in Articular Cartilage. An Experimental Investigation in the Rabbit. J Bone Joint Surg Am, 1980, vol. 62, pp. 1232–1251. DOI: 10.2106/00004623-198062080-00002
22. Shawn W.O., Giori J. Continuous Passive Motion (CPM): Theory and Principles of Clinical Application. J Rehabil Res Dev, 2000, vol. 37, pp. 179–188.
23. Song Z., Guo S., Pang M., Zhang S., Xiao N., Gao B., et al. Implementation of Resistance Training Using an Upper-Limb Exoskeleton Rehabilitation Device for Elbow Joint. J. Med. Biol. Eng, 2014, vol. 34, pp. 188–196. DOI: 10.5405/jmbe.1337
24. Sukal-Moulton T., Krosschell K.J., Gaebler-Spira D.J., Dewald J.P. Motor Impairment Factors Related to Brain Injury Timing in Early Hemiparesis. Part I: Expression of Upper-Extremity Weakness. Neurorehabil Neural Repair, 2014, vol. 28, pp. 13–23. DOI: 10.1177/1545968313500564
25. Ver C., Hofgart G., Menyhart L., Kardos L., Csiba L. Ankle-Foot Continuous Passive Motion Device for Mobilization of Acute Stroke Patients. OJTR, 2015, vol. 3, pp. 11–40. DOI: 10.4236/ojtr.2015.32004
26. Volpe B.T., Lynch D., Rykman-Berland A., Ferraro M., Galgano M., Hogan N. et al. Intensive Sensorimotor Arm Training Mediated by Therapist or Robot Improves Hemiparesis in Patients with Chronic Stroke. Neurorehabil. Neural Repair, 2008, vol. 22, pp. 305–310. DOI: 10.1177/1545968307311102
27. Zhang L.Q., Park H.S., Ren Y. Developing an Intelligent Robotic Arm for Stroke Rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics (IEEE), 2007, pp. 984–993. DOI: 10.1109/ICORR.2007.4428543
Опубликован
2018-09-01
Как цитировать
Петров, А., Смирнов, А., Епишев, В., & Шевцов, А. (2018). ПРИМЕНЕНИЕ ЭКЗОСКЕЛЕТА РУКИ С ФУНКЦИЕЙ «ЗЕРКАЛЬНОГО ДВИЖЕНИЯ» В РЕАБИЛИТАЦИОННЫХ ЦЕЛЯХ. Человек. Спорт. Медицина, 18(3), 113-119. https://doi.org/10.14529/hsm180311
Раздел
Восстановительная и спортивная медицина

Наиболее читаемые статьи этого автора (авторов)

1 2 > >>