EFFECT OF HYPOKINESIA AND INVOLUTIONAL PROCESSES ON THE SPECIFIC FORCE OF LATERAL FOOT FLEXORS UNDER ORTHOPEDIC PATHOLOGY AND IN TRAINED MEN FROM ACYCLIC SPORTS

Keywords: Anatomical cross-section area, specific force of muscles, lateral foot flexors, shin lengthening, ultrasonography, hypokinesia, wrestlers, involutional processes

Abstract

Aim. The article deals with comparing strength indicators of shin muscles and anatomical cross-section area (ACSA) in persons with hypokinesia as a result of orthopedic pathology and in trained persons from acyclic sports. Materials and methods. We studied five groups of people. The first group (n = 12) consisted of patients aged 18.7 ± 1.23 years with a lengthened shin according to Ilizarov technique. The second group included apparently healthy patients of the same age not engaged in sports. The third group consisted of professional athletes-wrestlers aged 18.8 ± 1.99 years (n = 10). The fourth group comprised apparently healthy men, non-athletes aged 44.1 ± 5.38 years (n = 12). The fifth group included wrestlers aged 47.8 ± 5.89 years (n = 10). We established the moment of force (MF) in lateral and plantar foot flexors (LFF and PFF). We calculated the anatomical cross-section area of LFF using ultrasonography. We also established the specific force of LFF and PFF. Results. We established the decrease in the specific force of LFF in the affected shin by 36.9 % in comparison with a healthy shin. The specific force of LFF in young non-athletes and athletes of the same age varied between 41.6 ± 3.59 N·m to the right and 41.1 ± 5.22 N·m to the left. In the third group this parameter varied from 42.7 ± 9.44 N·m to 43.9 ± 7.90 N·m. In the older age groups, the specific force of LFF was higher than in young non-athletes and young wrestlers. The specific force of LFF in the affected shin varied from 2.8 ± 0.81 N·m/cm2, in a healthy shin – from 3.2 ± 0.62 N·m/cm2. The same parameter in young non-athletes varied from 3.9 ± 0.25 (to the right) to 3.9 ± 0.44 (to the left) (р &< 0.05); in young wrestlers – from 4.5 ± 0.44 to 4.5 ± 0.36 respectively. This was higher than in the second group (р &< 0.05). In the older group this parameter varied from 4.2 ± 0.74 to 4.2 ± 0.67 N·m/cm2 respectively. This is significantly lower than in young wrestlers. We registered the slightest changes in the moment of force of PFF in both shins (р &< 0.05). In young athletes this parameter equaled 249.0 ± 26.42 N·m (to the right) and 252.0 ± 28.21 (to the left), which is higher by 15–20.5 % than in young-non-athletes. In older wrestlers the moment of force of PFF was higher by 17.4–21.8 % than in older non-athletes (p &< 0.05). Conclusion. Patients with hypokinesia demonstrate the lowest functional properties and specific force of frontal muscles in comparison with the representatives from other groups. As a result of regular acyclic loads, the specific force of frontal muscles is higher in young athletes and older athletes than in non-athletes.

References

1. Akima H., Kubo K., Imai M., Kanehisa H., Suzuki Y., Gunji A., Fukunaga T. Inactivity and Muscle: Effect of Resistance Training During Bed Rest on Muscle Size in the Lower Limb. Acta Physiol Scand., 2001, vol. 172(4), pp. 269–278. DOI: 10.1046/j.1365-201x.2001.00869.x
2. Alkner BA., Norrbrand L., Tesch PA. Neuromuscular Adaptations Following 90 Days Bed Rest With or Without Resistance Exercise. Aerosp Med Hum Perform., 2016, vol. 87(7), pp. 610–617. DOI: 10.3357/AMHP.4383.2016
3. Ambrosio F., Kadi F., Lexell J., Fitzgerald GK., Boninger ML., Huard J. The Effect of Muscle Loading on Skeletal Muscle Regenerative Potential: An Update of Current Research Findings Relating to Aging and Neuromuscular Pathology. Am J Phys Med Rehabil., 2009, vol. 88, pp. 145–155. DOI: 10.1097/PHM.0b013e3181951fc5
4. Di Iorio A., Abate M., Di Renzo D., Russolillo A., Battaglini C., Ripari P., Saggini R., Paganelli R., Abate G. Sarcopenia: Age-Related Skeletal Muscle Changes from Determinants to Physical Disability. Int J Immunopathol Pharmacol., 2006, vol. 19 (4), pp. 703–719. DOI: 10.1177/039463200601900401
5. Frontera W.R., Meredith C.N., O'Reilly K.P., Knuttgen H.G., Evans W.J. Strength Conditioning in Older Men: Skeletal Muscle Hypertrophy and Improved Function. J Appl Physiol (1985), 1988, vol. 64(3), pp. 1038–1044.
6. Hasson CJ., Caldwell GE. Effects of Age on Mechanical Properties of Dorsiflexor and Plantarflexor Muscles. Ann Biomed Eng., 2012, vol. 40 (5), pp. 1088–1101. DOI: 10.1007/s10439-011-0481-4. Epub 2011 Dec 21.
7. Kawakami Y. The Effects of Strength Training on Muscle Architecture in Humans. International Journal of Sport and Health Science, 2005, vol. 3, pp. 208–217. DOI: 10.5432/ijshs.3.208
8. Latorre-Roman PA., Segura-Jimenez V., Aparicio VA., Santos E., Campos MA., Garcia-Pinillos F., Herrador-Colmenero M., Alvarez-Gallardo IC., Delgado-Fernandez M. Ageing Influence in the Evolution of Strength and Muscle Mass in Women with Fibromyalgia: the alAndalus Project. Rheumatol Int., 2015, vol. 35 (7), pp. 1243–1250. DOI: 10.1007/s00296-015-3213-5.Epub 2015 Jan 24.
9. Lawniczak A., Kmiec Z. Postepy Hig Med Dosw (Online). 2012, vol. 19, no. 66, pp. 392–400. [Age-Related Changes of Skeletal Muscles: Physiology, Pathology and Regeneration]. [Article in Polish]. DOI: 10.5604/17322693.1000902
10. Manal K., Roberts D.P., Buchanan T.S. Optimal Pennation Angle of the Primary Ankle Plantar and Dorsiflexors: Variations with Sex, Contraction Intensity, and Limb. J Appl Biomech., 2006, vol. 22 (4), pp. 255–263. DOI: 10.1123/jab.22.4.255
11. Morse C.I., Thom J.M., Birch K.M., Narici M.V. Changes in Triceps Surae Muscle Architecture with Sarcopenia. Acta Physiol Scand., 2005, vol. 183 (3), pp. 291–298. DOI: 10.1111/j.1365-201X.2004.01404.x
12. Mueller MJ., Maluf KS. Tissue Adaptation to Physical Stress: a Proposed “Physical Stress Theory” to Guide Physical Therapist Practice, Education, and Research. Phys Ther., 2002, vol. 82 (4), pp. 383–403.
13. Narici M.V., Maganaris C.N., Reeves N.D., Capodaglio P. Effect of Aging on Human Muscle Architecture. J Appl Physiol (1985), 2003, vol. 95 (6), pp. 2229–2234. Epub 2003 Jul 3. DOI: 10.1152/japplphysiol.00433.2003
14. Norregaard J., Bulow P.M., Vestergaard-Poulsen P., Thomsen C., Danneskiold-Samoe B. Muscle Strength, Voluntary Activation and Cross-Sectional Muscle Area in Patients with Fibromyalgia. Br J Rheumatol., 1995, vol. 34 (10), pp. 925–931. DOI: 10.1093/rheumatology/34.10.925
15. Shah P.K., Stevens J.E., Gregory C.M., Pathare N.C., Jayaraman A., Bickel S.C., Bowden M., Behrman A.L., Walter G.A., Dudley G.A., Vandenborne K. Lower-Extremity Muscle Cross-Sectional Area after Incomplete Spinal Cord Injury. Arch Phys Med Rehabil., 2006, vol. 87 (6), pp. 772–778. DOI: 10.1016/j.apmr.2006.02.028
16. Shenkman BS. Structural-Metabolic Plasticity of Mammalian Skeletal Muscles in Hypokinesia and Weightlessness. Aviakosm Ekolog Med., 2002, vol. 36 (3), pp. 3–14.
17. Tate C.M., Williams G.N., Barrance P.J., Buchanan T.S. Lower Extremity Muscle Morphology in Young Athletes: an MRI-Based Analysis. Med Sci Sports Exerc., 2006, vol. 38 (1), pp. 122–128. DOI: 10.1249/01.mss.0000179400.67734.01
18. Tieland M., Trouwborst I., Clark B.C. Skeletal Muscle Performance and Ageing. J Cachexia Sarcopenia Muscle, 2018, vol. 9 (1), pp. 3–19. DOI: 10.1002/jcsm.12238. Epub 2017 Nov 19.
19. Trombetti A., Reid K.F., Hars M., Herrmann F.R., Pasha E., Phillips E.M., Fielding R.A. Age-Associated Declines in Muscle Mass, Strength, Power, and Physical Performance: Impact on Fear of Falling and Quality of Life. Osteoporos Int., 2016, vol. 27 (2), pp. 463–471. DOI: 10.1007/s00198-015-3236-5. Epub 2015 Jul 21.
20. Wall BT., Dirks ML., van Loon LJ. Skeletal Muscle Atrophy During Short-Term Disuse: Implications for Age-Related Sarcopenia. Ageing Res Rev., 2013, vol. 12 (4), pp. 898-906. DOI: 10.1016/j.arr.2013.07.003. Epub 2013 Aug 12.

References on translit

1. Akima H., Kubo K., Imai M., Kanehisa H., Suzuki Y., Gunji A., Fukunaga T. Inactivity and Muscle: Effect of Resistance Training During Bed Rest on Muscle Size in the Lower Limb. Acta Physiol Scand., 2001, vol. 172(4), pp. 269–278. DOI: 10.1046/j.1365-201x.2001.00869.x
2. Alkner BA., Norrbrand L., Tesch PA. Neuromuscular Adaptations Following 90 Days Bed Rest With or Without Resistance Exercise. Aerosp Med Hum Perform., 2016, vol. 87(7), pp. 610–617. DOI: 10.3357/AMHP.4383.2016
3. Ambrosio F., Kadi F., Lexell J., Fitzgerald GK., Boninger ML., Huard J. The Effect of Muscle Loading on Skeletal Muscle Regenerative Potential: An Update of Current Research Findings Relating to Aging and Neuromuscular Pathology. Am J Phys Med Rehabil., 2009, vol. 88, pp. 145–155. DOI: 10.1097/PHM.0b013e3181951fc5
4. Di Iorio A., Abate M., Di Renzo D., Russolillo A., Battaglini C., Ripari P., Saggini R., Paganelli R., Abate G. Sarcopenia: Age-Related Skeletal Muscle Changes from Determinants to Physical Disability. Int J Immunopathol Pharmacol., 2006, vol. 19 (4), pp. 703–719. DOI: 10.1177/039463200601900401
5. Frontera W.R., Meredith C.N., O'Reilly K.P., Knuttgen H.G., Evans W.J. Strength Conditioning in Older Men: Skeletal Muscle Hypertrophy and Improved Function. J Appl Physiol (1985), 1988, vol. 64(3), pp. 1038–1044.
6. Hasson CJ., Caldwell GE. Effects of Age on Mechanical Properties of Dorsiflexor and Plantarflexor Muscles. Ann Biomed Eng., 2012, vol. 40 (5), pp. 1088–1101. DOI: 10.1007/s10439-011-0481-4. Epub 2011 Dec 21.
7. Kawakami Y. The Effects of Strength Training on Muscle Architecture in Humans. International Journal of Sport and Health Science, 2005, vol. 3, pp. 208–217. DOI: 10.5432/ijshs.3.208
8. Latorre-Roman PA., Segura-Jimenez V., Aparicio VA., Santos E., Campos MA., Garcia-Pinillos F., Herrador-Colmenero M., Alvarez-Gallardo IC., Delgado-Fernandez M. Ageing Influence in the Evolution of Strength and Muscle Mass in Women with Fibromyalgia: the alAndalus Project. Rheumatol Int., 2015, vol. 35 (7), pp. 1243–1250. DOI: 10.1007/s00296-015-3213-5.Epub 2015 Jan 24.
9. Lawniczak A., Kmiec Z. Postepy Hig Med Dosw (Online). 2012, vol. 19, no. 66, pp. 392–400. [Age-Related Changes of Skeletal Muscles: Physiology, Pathology and Regeneration]. [Article in Polish]. DOI: 10.5604/17322693.1000902
10. Manal K., Roberts D.P., Buchanan T.S. Optimal Pennation Angle of the Primary Ankle Plantar and Dorsiflexors: Variations with Sex, Contraction Intensity, and Limb. J Appl Biomech., 2006, vol. 22 (4), pp. 255–263. DOI: 10.1123/jab.22.4.255
11. Morse C.I., Thom J.M., Birch K.M., Narici M.V. Changes in Triceps Surae Muscle Architecture with Sarcopenia. Acta Physiol Scand., 2005, vol. 183 (3), pp. 291–298. DOI: 10.1111/j.1365-201X.2004.01404.x
12. Mueller MJ., Maluf KS. Tissue Adaptation to Physical Stress: a Proposed “Physical Stress Theory” to Guide Physical Therapist Practice, Education, and Research. Phys Ther., 2002, vol. 82 (4), pp. 383–403.
13. Narici M.V., Maganaris C.N., Reeves N.D., Capodaglio P. Effect of Aging on Human Muscle Architecture. J Appl Physiol (1985), 2003, vol. 95 (6), pp. 2229–2234. Epub 2003 Jul 3. DOI: 10.1152/japplphysiol.00433.2003
14. Norregaard J., Bulow P.M., Vestergaard-Poulsen P., Thomsen C., Danneskiold-Samoe B. Muscle Strength, Voluntary Activation and Cross-Sectional Muscle Area in Patients with Fibromyalgia. Br J Rheumatol., 1995, vol. 34 (10), pp. 925–931. DOI: 10.1093/rheumatology/34.10.925
15. Shah P.K., Stevens J.E., Gregory C.M., Pathare N.C., Jayaraman A., Bickel S.C., Bowden M., Behrman A.L., Walter G.A., Dudley G.A., Vandenborne K. Lower-Extremity Muscle Cross-Sectional Area after Incomplete Spinal Cord Injury. Arch Phys Med Rehabil., 2006, vol. 87 (6), pp. 772–778. DOI: 10.1016/j.apmr.2006.02.028
16. Shenkman BS. Structural-Metabolic Plasticity of Mammalian Skeletal Muscles in Hypokinesia and Weightlessness. Aviakosm Ekolog Med., 2002, vol. 36 (3), pp. 3–14.
17. Tate C.M., Williams G.N., Barrance P.J., Buchanan T.S. Lower Extremity Muscle Morphology in Young Athletes: an MRI-Based Analysis. Med Sci Sports Exerc., 2006, vol. 38 (1), pp. 122–128. DOI: 10.1249/01.mss.0000179400.67734.01
18. Tieland M., Trouwborst I., Clark B.C. Skeletal Muscle Performance and Ageing. J Cachexia Sarcopenia Muscle, 2018, vol. 9 (1), pp. 3–19. DOI: 10.1002/jcsm.12238. Epub 2017 Nov 19.
19. Trombetti A., Reid K.F., Hars M., Herrmann F.R., Pasha E., Phillips E.M., Fielding R.A. Age-Associated Declines in Muscle Mass, Strength, Power, and Physical Performance: Impact on Fear of Falling and Quality of Life. Osteoporos Int., 2016, vol. 27 (2), pp. 463–471. DOI: 10.1007/s00198-015-3236-5. Epub 2015 Jul 21.
20. Wall BT., Dirks ML., van Loon LJ. Skeletal Muscle Atrophy During Short-Term Disuse: Implications for Age-Related Sarcopenia. Ageing Res Rev., 2013, vol. 12 (4), pp. 898-906. DOI: 10.1016/j.arr.2013.07.003. Epub 2013 Aug 12.
Published
2018-12-01
How to Cite
GrebеnyukL., Gryaznykh, A., & Kuchin, R. (2018). EFFECT OF HYPOKINESIA AND INVOLUTIONAL PROCESSES ON THE SPECIFIC FORCE OF LATERAL FOOT FLEXORS UNDER ORTHOPEDIC PATHOLOGY AND IN TRAINED MEN FROM ACYCLIC SPORTS. Human. Sport. Medicine, 18(4), 137-144. https://doi.org/10.14529/hsm180420
Section
Rehabilitation and sports medicine

Most read articles by the same author(s)