ANGIOGENESIS: LITERATURE REVIEW

  • I. Vasilyev South Ural State Medical University, Chelyabinsk, Russian Federation; Center for Plastic and Aesthetic Surgery PLASTAES, Chelyabinsk, Russian Federation igorvasilyev@list.ru
  • S. Vasilyev South Ural State Medical University, Chelyabinsk, Russian Federation; Center for Plastic and Aesthetic Surgery PLASTAES, Chelyabinsk, Russian Federation vsergeia@yahoo.com
  • I. Abushkin South Ural State Medical University, Chelyabinsk, Russian Federation; Center for Medical Laser Technologies, Chelyabinsk, Russian Federation; Chelyabinsk City Clinical Hospital № 1, Chelyabinsk, Russian Federation ivanabushkin@mail.ru
  • A. Denis Oblast Children Clinical Hospital, Tver, Russian Federation anna.denis@mail.ru
  • O. Sudeykina Oblast Children Hospital, Lipetsk, Russian Federation sudeykina_oa@mail.ru
  • V. Lapin Center for Medical Laser Technologies, Chelyabinsk, Russian Federation benchik-89@mail.ru
  • O. Romanova Chelyabinsk Oblast Children Hospital, Chelyabinsk, Russian Federation oa_bat@mail.ru
  • Y. Vasilyev South Ural State Medical University, Chelyabinsk, Russian Federation; Center for Plastic and Aesthetic Surgery PLASTAES, Chelyabinsk, Russian Federation vys@plastes.ru
  • V. Vasilyev South Ural State Medical University, Chelyabinsk, Russian Federation; Center for Plastic and Aesthetic Surgery PLASTAES, Chelyabinsk, Russian Federation b_b_c_@mail.ru
  • I. Karpov South Ural State Medical University, Chelyabinsk, Russian Federation; Center for Plastic and Aesthetic Surgery PLASTAES, Chelyabinsk, Russian Federation kmi_2008@mail.ru

Abstract

Aim. The aim of this study was to examine theoretical aspects of angiogenesis. Methods. The analysis of current literature and studies devoted to angiogenesis process. Results. The healthy body controls angiogenesis through a balance of modulators, regulated by a strong interaction between growth factors and inhibitors, the imbalance of which can lead to disease. These diseases are caused by both excessive angiogenesis (cancer, diabetic eye disease, rheumatoid arthritis), and insufficient angiogenesis (coronary heart disease, stroke, delayed wound healing). Also some perspective treatment modalities for these patients are revealed. Conclusion. Over one billion people worldwide suffer from diseases associated with disturbed angiogenesis. Comprehensive study of angiogenesis provides better understanding of the formation of new vessels in the healthy body and of pathogenic mechanisms, which can help in prevention or treatment of some diseases.

References

1. Zav'yalova O.V., Spivakovskiy Yu.M., Zakharova N.B., Chernenkov Yu.V., Zlobina O.V. [Vaskuloendotelialny Angiogenesis and Growth Factor Role in the Pathology of the Gastrointestinal Tract]. Eksperimental'naya i klinicheskaya gastroenterologiya [Experimental and Clinical Gastroenterology], 2014, iss. 110, no. 10, pp. 77–82. (in Russ.)
2. Burlev V.A., Zaydieva Z.S., Il'yasova N.A. [Regulation of Angiogenesis Gestation (Review)]. Problemy Reproduktsii [Problems Reproductions], 2008, no. 3, pp. 15–22. (in Russ.)
3. Gavrilenko T.I., Ryzhkova N.A., Parkhomenko A.N. [Vascular Endothelial Growth Factor in the Clinic of Internal Diseases and Pathogenetic Significance]. Ukrainskiy kardiologicheskiy zhurnal [Ukrainian Journal of Cardiology], 2011, no. 4, pp. 87–95. (in Russ.)
4. Kurtukova M.O., Bugaeva I.O., Ivanov A.N. [Factors that Regulate Angiogenesis]. Sovremennye problemy nauki i obrazovaniya [Modern Problems of Science and Education], 2015, no. 5, p. 246. (in Russ.)
5. Ivanov A.N., Grechikhin A.A., Norkin I.A. [Methods of Diagnosis of Endothelial Dysfunction]. Regionarnoe krovoobrashchenie i mikrotsirkulyatsiya [Regional Circulation and Microcirculation], 6. Poveshchenko O.V., Poveshchenko A.F., Konenkov V.I. [Physiological and Cytological Bases of Cellular Regulation of Angiogenesis]. Uspekhi fiziologicheskikh nauk [Advances of Physiological Sciences], 2012, vol. 43, no. 3, pp. 48–61. (in Russ.)
7. Chekhonin V.P., Shein S.A., Korchagina A.A., Gurina O.I. [The Role of VEGF in the Development of Neoplastic Angiogenesis]. Vestnik RAMN [Bulletin of Medical Sciences], 2012, no. 2, pp. 23–33. (in Russ.)
8. Hashimoto T., Wen G., Lawton M.T. Abnormal Expression of Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases in Brain Arteriovenus Malformations. Stroke, 2003, vol. 34, pp. 925–931. DOI: 10.1161/01.STR.0000061888.71524.DF
9. Adair T.H., Montani J.P. Angiogenesis. San Rafael (CA). Morgan & Claypool Life Sciences, 2010. 82 р.
10. Ahluwalia A., Tarnawski A.S. Critical Role of Hypoxia Sensor – HIF-1? in VEGF Gene Activation. Implications for Angiogenesis and Tissue Injury Healing. Curr. Med. Chem., 2012, vol. 19, no. 1, pp. 90–97. DOI: 10.2174/092986712803413944
11. Eriksson K., Magnusson P., Dixelius J. An Giostatin and Endostatin Inhibit Endothelial Cell Migration in Response to FGF and VEGF Without Interfering with Specific Intracellular Signal Transduction Pathways. FEBS Lett., 2003, vol. 536, pp. 19–24. DOI: 10.1016/S0014-5793(03)00003-6
12. Agliano A.A., Mattassi R., Loose D.A., Vaghi M. Angiogenesis / in Hemangiomas and Vascular Malformations An Atlas of Diagnosis and Treatment. Italia: Springer, Verlag, 2009. 335 р.
13. Augustin H.G. Tubes, Branches, and Pillars. The Many ways of Forming a New Vasculature. Circ Res., 2001, vol. 89, pp. 645–647.
14. Boon L.M., Ballieux F., Vikkula M. Pathogenesis of Vascular Anomalies. Clin. Plast. Surg., 2011, vol. 38, pp. 7–19. DOI: 10.1016/j.cps.2010.08.012
15. Bosolo E., Bischoff J. Vasculogenesis in Infantile Hemangioma. Angiogenesis, 2009, vol. 12, no. 2, pp. 197–207. DOI: 10.1007/s10456-009-9148-2.
16. Cantelmo A.R., Brajic A., Carmeliet P. Endothelial Metabolism Driving Angiogenesis. Emerging Concepts and Principles. Cancer. J., 2015, vol. 21, no. 4, pp. 244–249. DOI: 10.1097/PPO.0000000000000133
17. Carmeliet P. Mechanisms of Angiogenesis and Arteriogenesis. Nat Med., 2000, vol. 6, pp. 389–395. DOI: 10.1038/74651
18. Lee C.Z., Xu B., Hashimoto T. Doxicycline Suppress Cerebral Matrix Metalloproteinase 9 and an Giogenesis Induced by Focal Hyperstimulation of Vascular Endothelial Growth Factor in a Mouse Model. Stroke, 2004, vol. 35, pp. 1715–1719. DOI: 10.1161/01.STR.0000129334.05181.b6
19. Egginton S. Physiological Factors Influencing Capillary Growth. Acta. Physiol. (Oxf)., 2011, vol. 202, no. 3, pp. 225–239. DOI: 10.1111/j.1748-1716.2010.02194.x
20. Gale N.W., Baluk P., Pan L. Ephrin B2 Selectively Marks Arterial Vessels and Neovascularization Sites in the Adult, with Expression in Both Endothelial and Smooth Muscle Cells. Dev Biol., 2001, vol. 230, pp. 151–160. DOI: 10.1006/dbio.2000.0112
21. Greenberg S., Bischoff J. Pathogenesis of Infantile Haemangioma. BJD, 2013, vol. 168, pp. 12–19. DOI: 10.1111/bjd.12435
22. Hashimoto T., Shibasaki F. Hypoxia-Inducible Factor as an Angiogenic Master Switch. Front Pediatr., 2015, vol. 3, p. 33.
23. Mattassi R., Loose D.A., Vaghi M. (Eds.) Hemangiomas and Vascular M Alformations. An Atlas of Diagnosis and Treatment: Springer, 2009. 335 p.
24. Marler J.J., Fishman S.J., Kilroy S.M. Increased Expression of Urinary Matrix Metalloproteinases Parallels the Extent of Activity of Vascular Anomalies. Pediatrics, 2005, vol. 16, pp. 38–45. DOI: 10.1542/peds.2004-1518
25. Djonov V., Schmid M., Tschanz S.A., Burri P.H. Intussusceptive Angiogenesis. Its Role in Embryonic Vascular Network Formation. Circ Res., 2000, vol. 86, pp. 286–292. DOI: 10.1161/01.RES.86.3.286
26. Jain R.K. Molecular Regulation of Vessel Maturation. Nat Med., 2003, vol. 9, pp. 685–693. DOI: 10.1038/nm0603-685
27. Johnson K.E., Wilgus T.A. Vascular Endothelial Growth Factor and Angiogenesis in the Regulation of Cutaneous Wound Repair. Adv. Wound Care, 2014, vol. 3, no. 10, pp. 647–661. DOI: 10.1089/wound.2013.0517
28. Kerbel R.S., Kamen B.A. The Anti Angiogenic Basis of Metronomic Chemotherapy. Nat Rev Cancer., 2004, vol. 4(6), pp. 423–436. DOI: 10.1038/nrc1369
29. Krock B.L., Skuli N., Simon M.C. Hypoxia-Induced Angiogenesis. Good and Evil. Genes Cancer., 2011, vol. 2, no. 12, pp. 1117–1133. DOI: 10.1177/1947601911423654
30. Liping L., Kakiuchi-Kiyota S., Lora L. A Mold Pathogenesis of Human Hemangiosarcomas and Hemamgiomas. Human Pathology, 2013, vol. 44, pp. 2302–2311. DOI: 10.1016/j.humpath.2013.05.012
31. Hogg N., Henderson R., Leitinger B. Mech Anisms Contributing to the Activity of Integrins on Leukocytes. Immunol Rev., 2002, vol. 186, pp. 164–171. DOI: 10.1034/j.1600-065X.2002.18614.x
32. Anghelina M., Schmeisser A., Krishnan P. Migration of Monocytes/Macrophages in Vitro and in Vivo is Accompanied by MMP12 Dependent Tunnels Formation and by Neo Vascularization. Cold Spring Harb Symp Quant Biol., 2002, vol. 17, pp. 209–215. DOI: 10.1101/sqb.2002.67.209
33. Serini G., Ambrosi D., Giraudo E. Modeling the Early Stages of Vascular Network Assembly. EM BO J., 2003, vol. 22, pp. 1771–1779. DOI: 10.1093/emboj/cdg176
34. Moldovan N.I. Role of Monocytes and Macrophages in Adult Angiogenesis. A Light at the Tunnel’s end. J Hematother Stem Cell Res., 2002, vol. 11(2), pp. 179–194. DOI: 10.1089/152581602753658394
35. Zhao G., Yan W., Chen E. Numerical Simulation of the Inhibitory Effect of Angiostatin on Metastatic Tumor Angiogenesis and Microenvironment. Bull. Math. Biol., 2013, vol. 75, no. 2, pp. 274–287. DOI: 10.1007/s11538-012-9805-2
36. Pepper M.S. Role of the Matrix Metalloproteinase and Plasminogen Activator Plasmin Systems in Angiogenesis. Arterioscler Thromb Vasc Biol., 2001, vol. 21, pp. 1104–1117. DOI: 10.1161/hq0701.093685
37. Colonna V., Resta L., Napoli A. Placental Hypoxia and Neonatal Haemangioma. Clinical and Histological Observations. Br. J Dermatol., 2010, vol. 162, pp. 208–209. DOI: 10.1111/j.1365-2133.2009.09493.x
38. Rucker H.K., Wynder H.J., Thomas W.E. Cellular Mechanisms of CNS Pericytes. Brain Res Bull., 2000, vol. 51(5), pp. 363–369. DOI: 10.1016/S0361-9230(99)00260-9
39. Shibuya M. Vascular Endothelial Growth Factor and Its Receptor System. Physiological Functions in Angiogenesis and Pathological Roles in Various Diseases. J. Biochem., 2013, vol. 153, no. 1, pp. 13–19. DOI: 10.1093/jb/mvs136
40. Taraboletti G., Rusnati M., Ragona L. Targeting Tumor Angiogenesis with TSP-1-based Compounds. Rational Design of Antiangiogenic Mimetics of Endogenous Inhibitors. Oncotarget., 2010, vol. 1, no. 7, pp. 662–673. DOI: 10.18632/oncotarget.200
41. Yadav L., Puri N., Rastogi V. Tumour Angiogenesis and Angiogenic Inhibitors. J. Clin. Diagn. Res., 2015, vol. 9, no. 6, pp. 01–05.
42. Gerhardt H., Golding M., Fruttiger M. VEGF Guides Angiogenic Sprouting Utilizing Endothelial Tip Cell Filopodia. J Cell Biol., 2003, vol. 161, pp. 1163–1177. DOI: 10.1083/jcb.200302047
43. Zimna A., Kurpisz M. Hypoxia-Inducible Factor-1 in Physiological and Pathophysiological Angiogenesis. Biomed. Res. Int., 2015, vol. 20, p. 549.

References on translit

Published
2017-02-01
How to Cite
Vasilyev, I., Vasilyev, S., Abushkin, I., Denis, A., Sudeykina, O., Lapin, V., Romanova, O., Vasilyev, Y., Vasilyev, V., & Karpov, I. (2017). ANGIOGENESIS: LITERATURE REVIEW. Human. Sport. Medicine, 17(1), 36-45. https://doi.org/10.14529/hsm170104
Section
Clinical and Experimental Medicine