THYROID STATUS OF ATHLETES IN VARIOUS DISCIPLINES

Keywords: thyroid gland, physical activity, adaptation, hormones, sports, thyroid status

Abstract

Aim. The article deals with the assessment of the thyroid status of athletes engaged in physical activity of varying intensity. Materials ant methods. 146 elite athletes involved in bobsleigh, biathlon, shooting and snowboarding participated in the study. We determined the serum concentration of thyroid stimulating hormone (TSH), free triiodothyronine (f.T3), free thyroxin (f.T4) and thyroid peroxidase antibodies (TPO-ab) with the COBAS e411 immunochemistry analyzer (Roche, Germany). The integral thyroid index ((f.T3 + f.T4)/TSH) was used for the assessment of the level of function of the thyroid proper. The conversion index of thyroxin to triiodothyronine (f.T4/ f.T3) was also studied. Results. 40 % of the bobsleigh athletes examined and 29 % of the snowboarders had high serum f.T3. The concentration of f.T4 in all examined athletes both male and female was within normal limits. Approximately 25 % of the male athletes examined had low II values. Among female athletes, 25 % of shooters and 33 % of bobsleigh athletes had low II values. In male biathletes and bobsleigh athletes, TPO-ab was 56 % higher than in shooters and snowboarders. In 43 % of bobsleigh athletes, 19 % of shooters, 10 % of biathletes and snowboarders, the content of TSH in males exceeded the reference intervals. Among females, TSH was high in 25 % of shooters and bobsleigh athletes. Conclusion. There were no statistically significant differences in the content of thyroid hormones in the compared sports groups, which can probably be explained by the activity of deiodinases at the local, intracellular level. At the same time, in a large number of respondents surveyed, the indicators of II and TPO-ab were outside the physiological norm.

Author Biographies

R. Radzhabkadiev , Scientific Research Institute of Nutrition, Moscow, Russian Federation

Junior Research Fellow, Laboratory of Sports Anthropology and Nutritionology, Federal Research Center for Nutrition, Biotechnology and Food Safety. 109240, Moscow

K. Vybornaya , Scientific Research Institute of Nutrition, Moscow, Russian Federation

Research Fellow, Laboratory of Sports Anthropology and Nutritionology, Federal Research Center for Nutrition, Biotechnology and Food Safety. 109240, Moscow

C. Lavrinenko , Scientific Research Institute of Nutrition, Moscow, Russian Federation

Junior Research Fellow, Laboratory of Sports Anthropology and Nutritionology, Federal Research Center for Nutrition, Biotechnology and Food Safety. 109240, Moscow

A. Vasilev , Scientific Research Institute of Nutrition, Moscow, Russian Federation

Doctor of Biological Sciences, Professor, Chief Specialist of the Laboratory of Metabolic and Proteomic Research Methods, Federal Research Center for Nutrition, Biotechnology and Food Safety. 109240, Moscow

References

1. Глушаков, Р.И. Роль тиреоидных гормонов в регуляции ангиогенеза, клеточной пролиферации и миграции / Р.И. Глушаков, С.Н. Прошин, Н.И. Тапильская // Клеточная трансплантология и тканевая инженерия. – 2011. – Т. 6, № 4. – C. 26–33.
2. Губина, А.Е. Сезонные изменения показателей иммунной и эндокринной систем спортсменов в природно-климатических условиях среднего Приобья / А.Е. Губина, А.П. Койносов // Экология человека. – 2018. – № 2. – С. 31–36.
3. Назаренко, Г.И. Клиническая оценка результатов лабораторных исследований / Г.И. Назаренко, А.А. Кишкун. – М.: Медицина, 2000. – 544 с.
4. Тиреоидный статус при физических нагрузках / В.В. Корнякова, Я.А. Сауткин, М.В. Заболотных и др. // Международный журнал прикладных и фундаментальных исследований. – 2018. – № 5 (1). – С. 175–179.
5. Bianco, A.C. Deiodinases: implications of the local control of thyroid hormone action / A.C. Bianco, B.W. Kim // Journal of Clinical Investigation. – 2006. – Vol. 116 (10). – P. 2571–2579. DOI:10.1172/jci29812
6. Bloise, F.F. Role of thyroid hormone in skeletal muscle physiology / F.F. Bloise, A. Cordeiro, T.M. Ortiga-Carvalho // Journal of Endocrinology. – 2018. – Vol. 236 (1). – P. 57–68. DOI: 10.1530/joe-16-0611
7. Cicatiello, A.G. Metabolic Effects of the Intracellular Regulation of Thyroid Hormone: Old Players, New Concepts / A.G. Cicatiello, D.Di. Girolamo, M. Dentice // Frontiers in Endocrinology. – 2018. – Vol. 9. DOI: 10.3389/fendo.2018.00474
8. Duclos, M. Exercise and the Hypothalamo-Pituitary-Adrenal Axis / M. Duclos, A. Tabarin // Sports Endocrinology. – 2016. – Vol. 47. – P. 12–26. DOI: 10.1159/000445149
9. Hammes, S.R. Overlapping nongenomic and genomic actions of thyroid hormone and steroids / S.R. Hammes, P.J. Davis // Best Practice & Research Clinical Endocrinology & Metabolism. – 2015. – Vol. 29 (4). – P. 581–593. DOI: 10.1016/j.beem.2015.04.001
10. Hormonal assessment of participants in a long distance walk / H.S. De Souza, T.V. Jardim, W.K.S. Barroso et al. // Diabetology & Metabolic Syndrome. – 2019. – Vol. 11 (1). DOI: 10.1186/s13098-019-0414-1
11. Intracellular Inactivation of Thyroid Hormone Is a Survival Mechanism for Muscle Stem Cell Proliferation and Lineage Progression / M. Dentice, R. Ambrosio, V. Damiano et al. / Cell Metabolism. – 2014. – Vol. 20 (6). – P. 1038–1048. DOI: 10.1016/j.cmet.2014.10.009
12. Knechtle, B. Physiology and Pathophysiology in Ultra-Marathon Running / B. Knechtle, P.T. Nikolaidis // Frontiers in Physiology. – 2018. – Vol. 9 (634). DOI: 10.3389/fphys.2018. 00634
13. The thyroid hormone activating enzyme, type 2 deiodinase, induces myogenic differentiation by regulating mitochondrial metabolism and reducing oxidative stress / S. Sagliocchi, A.G. Cicatiello, E.Di Cicco et al. // Redox Biology. – 2019. – Vol. 24. (101228). DOI: 10.1016/j.redox.2019.101228
14. Thyroid hormone signaling and deiodinase actions in muscle stem/progenitor cells / R. Ambrosio, M.A. De Stefano, D.Di Girolamo, D. Salvatore // Molecular and Cellular Endocrinology. – 2017. – Vol. 459. – P. 79–83. DOI: 10.1016/j.mce.2017.06.014
15. Thyroid hormones and cardiovascular disease / A. Jabbar, A. Pingitore, S.H.S. Pearce et al. // Nature Reviews Cardiology. – 2016. – Vol. 14 (1). – P. 39–55. DOI: 10.1038/nrcardio. 2016.174
16. Vaitkus, J. Thyroid Hormone Mediated Modulation of Energy Expenditure / J. Vaitkus, J. Farrar, F. Celi // International Journal of Molecular Sciences. – 2015. – Vol. 16 (7). – P. 16158–16175. DOI: 10.3390/ijms160716158
17. Vargas-Uricoechea, H. Thyroid hormones and the heart / H. Vargas-Uricoechea, C.H. Sierra-Torres // Hormone Molecular Biology and Clinical Investigation. – 2014. – Vol. 18 (1). DOI: 10.1515/hmbci-2013-0059
18. Yamanaka, Y. Hypothalamic‐pituitary‐adrenal axis differentially responses to morning and evening psychological stress in healthy subjects / Y. Yamanaka, H. Motoshima., K. Uchida // Neuropsychopharmacology Reports. – 2019. – Vol. 39 (1). – P. 41–47. DOI: 10.1002/npr2.12042
19. Yavuz, S. Thyroid Hormone Action and Energy Expenditure / S. Yavuz, S.N. del Prado, F.S. Celi // Journal of the Endocrine Society. – 2019. – Vol. 3 (7). – P. 1345–1356. DOI: 10.1210/js.2018-00423
20. Yehuda-Shnaidman, E. Thyroid Hormone, Thyromimetics, and Metabolic Efficiency / E. Yehuda-Shnaidman, B. Kalderon, J Bar-Tana // Endocrine Reviews. – 2014. – Vol. 35 (1). – P. 35–58. DOI: 10.1210/er.2013-1006

References on translit

1. Glushakov R.I., Proshin S.N., Tapil’skaya N.I. [The Role of Thyroid Hormones in the Regulation of Angiogenesis, Cell Proliferation and Migration]. Kletochnaya transplantologiya i tkanevaya inzheneriya [Cell Transplantology and Tissue Engineering], 2011, vol. 6, no. 4, pp. 26–33. (in Russ.)
2. Gubina A.E., Koynosov A.P. [Seasonal Changes in the Indicators of the Immune and Endocrine Systems of Athletes in the Natural and Climatic Conditions of the Middle Priobye]. Ekologiya cheloveka [Human Ecology], 2018, no. 2, pp. 31–36. (in Russ.) DOI: 10.33396/1728-0869-2018-2-31-36
3. Nazarenko G.I., Kishkun A.A. Klinicheskaya otsenka rezul’tatov laboratornykh issledovaniy [Clinical Evaluation of Laboratory Results]. Moscow, Medicine Publ., 2000. 544 p.
4. Kornyakova V.V., Sautkin Ya.A., Zabolotnykh M.V. et al. [Thyroid Status During Physical Exertion]. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy [International Journal of Applied and Basic Research], 2018, no. 5 (1), pp. 175–179. (in Russ.)
5. Bianco A.C., Kim B.W. Deiodinases: Implications of the Local Control of Thyroid Hormone Action. Journal of Clinical Investigation, 2006, vol. 116 (10), pp. 2571–2579. DOI: 10.1172/jci29812
6. Bloise F.F., Cordeiro A., Ortiga-Carvalho T.M. Role of Thyroid Hormone in Skeletal Muscle Physiology. Journal of Endocrinology, 2018, vol. 236 (1), pp. 57–68. DOI: 10.1530/joe-16-0611
7. Cicatiello A.G., Girolamo D.Di., Dentice M. Metabolic Effects of the Intracellular Regulation of Thyroid Hormone: Old Players, New Concepts. Frontiers in Endocrinology, 2018, vol. 9. DOI: 10.3389/fendo.2018.00474
8. Duclos M., Tabarin A. Exercise and the Hypothalamo-Pituitary-Adrenal Axis. Sports Endocrinology, 2016, vol. 47, pp. 12–26. DOI: 10.1159/000445149
9. Hammes S.R., Davis P.J. Overlapping Nongenomic and Genomic Actions of Thyroid Hormone and Steroids. Best Practice & Research Clinical Endocrinology & Metabolism, 2015, vol. 29 (4), pp. 581–593. DOI: 10.1016/j.beem.2015.04.001
10. De Souza H.S., Jardim T.V., Barroso W.K.S. et al. Hormonal Assessment of Participants in a Long Distance Walk. Diabetology & Metabolic Syndrome, 2019, vol. 11 (1). DOI: 10.1186/s13098-019-0414-1
11. Dentice M., Ambrosio R., Damiano V., Sibilio A., Luongo C., Guardiola O., Salvatore D. Intracellular Inactivation of Thyroid Hormone Is a Survival Mechanism for Muscle Stem Cell Pro-liferation and Lineage Progression. Cell Metabolism, 2014, vol. 20 (6), pp. 1038–1048. DOI: 10.1016/j.cmet. 2014.10.009
12. Knechtle B., Nikolaidis P.T. Physiology and Pathophysiology in Ultra-Marathon Running. Frontiers in Physiology, 2018, vol. 9 (634). DOI: 10.3389/fphys.2018.00634
13. Sagliocchi S., Cicatiello A.G., Di Cicco E., Ambrosio R., Miro C., Di Girolamo D., Dentice M. The Thyroid Hormone Activating Enzyme, Type 2 Deiodinase, Induces Myogenic Differentiation by Regulating Mitochondrial Metabolism and Reducing Oxidative Stress. Redox Biology, 2019, vol. 24, (101228). DOI: 10.1016/j.redox.2019.101228
14. Ambrosio R., De Stefano M.A., Di Girolamo D., Salvatore D. Thyroid Hormone Signaling and Deiodinase Actions in Muscle Stem/Progenitor Cells. Molecular and Cellular Endocrinology, 2017, vol. 459, pp. 79–83. DOI: 10.1016/j.mce.2017.06.014
15. Jabbar A., Pingitore A., Pearce S.H.S., Zaman A., Iervasi G., Razvi S. Thyroid Hormones and Cardiovascular Disease. Nature Reviews Cardiology, 2016, vol. 14 (1), pp. 39–55. DOI: 10.1038/nrcardio.2016.174
16. Vaitkus J., Farrar J., Celi F. Thyroid Hormone Mediated Modulation of Energy Expenditure. International Journal of Molecular Sciences, 2015, vol. 16 (7), pp. 16158–16175. DOI: 10.3390/ijms160716158
17. Vargas-Uricoechea H., Sierra-Torres C.H. Thyroid Hormones and the Heart. Hormone Molecular Biology and Clinical Investigation, 2014, vol. 18 (1). DOI: 10.1515/hmbci-2013-0059
18. Yamanaka Y., Motoshima H., Uchida K. Hypothalamic-Pituitary-Adrenal Axis Differentially Responses to Morning and Evening Psychological Stress in Healthy Subjects. Neuropsycho-pharmacology Reports, 2019, vol. 39 (1), pp. 41–47. DOI: 10.1002/npr2.12042
19. Yavuz S., del Prado S.N., Celi F.S. Thyroid Hormone Action and Energy Expenditure. Journal of the Endocrine Society, 2019, vol. 3 (7), pp. 1345–1356. DOI: 10.1210/js.2018-00423
20. Yehuda-Shnaidman E., Kalderon B., Bar-Tana J. Thyroid Hormone, Thyromimetics, and Metabolic Efficiency. Endocrine Reviews, 2014, vol. 35 (1), pp. 35–58. DOI: 10.1210/er.2013-1006
Published
2020-10-12
How to Cite
Radzhabkadiev, R., Vybornaya, K., Lavrinenko, C., & Vasilev, A. (2020). THYROID STATUS OF ATHLETES IN VARIOUS DISCIPLINES. Human. Sport. Medicine, 20(S1), 5-12. https://doi.org/10.14529/hsm20s101
Section
Physiology