ПРИМЕНЕНИЕ ЭКЗОСКЕЛЕТА РУКИ С ФУНКЦИЕЙ «ЗЕРКАЛЬНОГО ДВИЖЕНИЯ» В РЕАБИЛИТАЦИОННЫХ ЦЕЛЯХ

А. А. Петров, Почта alex_petrov_2@mail.ru (Южно-Уральский государственный университет, г. Челябинск, Россия), orcid http://orcid.org/0000-0001-5072-2587
А. С. Смирнов, Почта 2231034@mail.ru (Южно-Уральский государственный университет, г. Челябинск, Россия), orcid http://orcid.org/0000-0002-9529-638X
В. В. Епишев, Почта epishev74@mail.ru (Южно-Уральский государственный университет, г. Челябинск, Россия), orcid http://orcid.org/0000-0002-7284-7388
А. В. Шевцов, Почта sportmedi@mail.ru (Национальный государственный университет физической культуры, спорта и здоровья имени П.Ф. Лесгафта, г. Санкт-Петербург, Россия), orcid http://orcid.org/0000-0002-9878-3378

Аннотация


Цель. Разработать прототип экзоскелета руки, предназначенного для лечения проблем движения верхней конечности после кровоизлияния в мозг или инфаркта. Материалы и методы. Функция «зеркального движения» реализована с использованием манипуляционного устройства, включающего в себя три акселерометра GY-85, программное обеспечение, которое отслеживает углы перемещения, устройства для беспроводной передачи данных, контроллер Arduino и сервомоторы экзоскелета. Результаты. В ходе этого исследования был разработан прототип реабилитационного устройства. Устройство было протестировано на 6 добровольцах. Использование Arduino позволило сократить время отклика сервомоторов до 400 мс. Выводы. Если поражена только одна рука, в случае гемипареза / гемиплегии, то восстановительная терапия может проводиться в соответствии с указанной программой или путем копирования движений здоровой конечности путем «зеркального движения».


Ключевые слова


Экзоскелет, движение, реабилитация

Полный текст:

PDF (English)

Литература


1. Ball S.J, Brown I., Scott S. Medarm: A Rehabilitation Robot with 5dof at the Shoulder Complex. Zurich: IEEE, 1–6, 2007.
2. Beer R.F., Dewald J.P., Dawson M.L., Rymer W.Z. Target-Dependent Differences Between Free and Constrained Arm Movements in Chronic Hemiparesis. Exp. Brain Res, 2004, vol. 156, pp. 458–470. DOI: 10.1007/s00221-003-1807-8
3. Bernstein N. The Coordination and Regulation of Movement. London: Pergamon Press, 1967, 196 p.
4. Blank A., O’Malley M.K., Francisco G.E., Contreras-Vidal G.L. A Pre-Clinical Framework for Neural Control of a Therapeutic Upper-Limb Exoskeleton. San Diego, CA: IEEE, 2013, pp. 1159–1162. DOI: 10.1109/NER.2013.6696144
5. Brackbill E.A., Mao Y., Agrawal S.K., Annapragada M., Dubey V.N. Dynamics and Control of a 4-dof Wearable Cable-Driven Upper Arm Exoskeleton. Kobe: IEEE, 2009, pp. 2300-2305. DOI: 10.1109/ROBOT.2009.5152545
6. Carignan C., Liszka M., Roderick S. Design of an Arm Exoskeleton with Scapula Motion for Shoulder Rehabilitation. Seattle, WA: IEEE, 2005, pp. 524–531. DOI: 10.1109/ICAR.2005.1507459
7. Carignan C., Tang J., Roderick S., Naylor M. A Configuration-Space Approach to Controlling a Rehabilitation Arm Exoskeleton. Noordwijk: IEEE, 2007, pp. 179–187. DOI: 10.1109/ICORR.2007.4428425
8. Culmer P.R., Jackson A.E., Makower S.G., Cozens J.A., Levesley M.C., Mon-Williams M. et al. A Novel Robotic System for Quantifying Arm Kinematics and Kinetics: Description and Evaluation in Therapist-Assisted Passive Arm Movements Post-Stroke. J. Neurosci. Methods, 2011, vol. 197, pp. 259–269. DOI: 10.1016/j.jneumeth.2011.03.004
9. DeJong G., Smout J., Horn D., Gassaway J., Maulden A. Timing of Initiation of Rehabilitation After Stroke. Arch. Phys. Med. Rehabil., 2015, vol. 86, pp. 34–40.
10. Ellis M.D., Drogos J., Carmona C., Keller T., Dewald J.P. Neck Rotation Modulates Flexion Synergy Torques, Indicating an Ipsilateral Reticulospinal Source for Impairment in Stroke. J. Neurophysiol, 2012, vol. 108, pp. 3096–3104. DOI: 10.1152/jn.01030.2011
11. Ellis M.D., Sukal T., DeMott T., Dewald J.P. Augmenting Clinical Evaluation of Hemiparetic Arm Movement with a Laboratory-Based Quantitative Measurement of Kinematics as a Function of Limb Loading. Neurorehabil. Neural Repair, 2008, vol. 22, pp. 321–329. DOI: 10.1177/1545968307313509
12. Fink M., Prada C., Wu F., Cassereau D. Self-Focusing with Time-Reversal Mirror in Inhomogeneous Media. Proc. IEEE Ultrason. Symp., 1989, pp. 681–686. DOI: 10.1109/ULTSYM.1989.67072
13. French A., Pehlivan U., O’Malley K. Current Trends in Robot-Assisted Upper-Limb Stroke Rehabilitation: Promoting Patient Engagement in Therapy. Curr Phys Med Rehabil Rep, 2014, vol. 2, pp. 184–195. DOI: 10.1007/s40141-014-0056-z
14. Galinski D., Sapin J., Dehez B. Optimal Design of an Alignment-Free Two-Dof Rehabilitation Robot for the Shoulder Complex. 2013 IEEE International Conference on Rehabilitation Robotics (ICORR) (IEEE), 2013, pp. 1–7. DOI: 10.1109/ICORR.2013.6650502
15. Klamroth-Marganska V., Blanco J., Campen K., Curt A., Dietz V., Ettlin T. et al. Three-Dimensional, Task-Specific Robot Therapy of the Arm After Stroke: a Multicentre, Parallel Group Randomised Trial. Lancet Neurol, 2014, vol. 13, pp. 159–166. DOI: 10.1016/S1474-4422(13)70305-3
16. Kwakkel G., Kollen B., Lindeman E. Understanding the Pattern of Functional Recovery after Stroke: Facts and Theories. Restor. Neurol. Neurosci., 2004, vol. 22, pp. 281–299.
17. Namdari S., Horneff J., Baldwin K., Keenan M. Muscle Releases to Improve Passive Motion and Relieve Pain in Patients with Spastic Hemiplegia and Elbow Flexion Contractures. J Shoulder Elbow Surg, 2012, vol. 21, pp. 1357–1362. DOI: 10.1016/j.jse.2011.09.029
18. Ramachandran V.S., Rogers-Ramachandran D., Cobb S. Touching the Phantom Limb. Nature, 1995, vol. 377, pp. 489–490. DOI: 10.1038/377489a0
19. Regenbrecht H.T., Franz E.A., McGregor G., Dixon B.G., Hoermann S. Be+yond the Looking Glass: Fooling the Brain with the Augmented Mirror Box. Presence, 2011, vol. 20, pp. 559–576. DOI: 10.1162/PRES_a_00082
20. Roby-Brami A., Jacobs S., Bennis N., Levin M.F. Hand Orientation for Grasping and Arm Joint Rotation Patterns in Healthy Subjects and Hemiparetic Stroke Patients. Brain Res, 2003, vol. 969, pp. 217–229. DOI: 10.1016/S0006-8993(03)02334-5

21. Salter R.B., Simmonds D.F., Malcolm B.W., Rumble E.J., MacMichael D., Clements N.D. The Biological Effect of Continuous Passive Motion on the Healing of Full-Thickness Defects in Articular Cartilage. An Experimental Investigation in the Rabbit. J Bone Joint Surg Am, 1980, vol. 62, pp. 1232–1251. DOI: 10.2106/00004623-198062080-00002
22. Shawn W.O., Giori J. Continuous Passive Motion (CPM): Theory and Principles of Clinical Application. J Rehabil Res Dev, 2000, vol. 37, pp. 179–188.
23. Song Z., Guo S., Pang M., Zhang S., Xiao N., Gao B., et al. Implementation of Resistance Training Using an Upper-Limb Exoskeleton Rehabilitation Device for Elbow Joint. J. Med. Biol. Eng, 2014, vol. 34, pp. 188–196. DOI: 10.5405/jmbe.1337
24. Sukal-Moulton T., Krosschell K.J., Gaebler-Spira D.J., Dewald J.P. Motor Impairment Factors Related to Brain Injury Timing in Early Hemiparesis. Part I: Expression of Upper-Extremity Weakness. Neurorehabil Neural Repair, 2014, vol. 28, pp. 13–23. DOI: 10.1177/1545968313500564
25. Ver C., Hofgart G., Menyhart L., Kardos L., Csiba L. Ankle-Foot Continuous Passive Motion Device for Mobilization of Acute Stroke Patients. OJTR, 2015, vol. 3, pp. 11–40. DOI: 10.4236/ojtr.2015.32004
26. Volpe B.T., Lynch D., Rykman-Berland A., Ferraro M., Galgano M., Hogan N. et al. Intensive Sensorimotor Arm Training Mediated by Therapist or Robot Improves Hemiparesis in Patients with Chronic Stroke. Neurorehabil. Neural Repair, 2008, vol. 22, pp. 305–310. DOI: 10.1177/1545968307311102
27. Zhang L.Q., Park H.S., Ren Y. Developing an Intelligent Robotic Arm for Stroke Rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics (IEEE), 2007, pp. 984–993. DOI: 10.1109/ICORR.2007.4428543


References


1. Ball S.J, Brown I., Scott S. Medarm: A Rehabilitation Robot with 5dof at the Shoulder Complex. Zurich: IEEE, 1–6, 2007.
2. Beer R.F., Dewald J.P., Dawson M.L., Rymer W.Z. Target-Dependent Differences Between Free and Constrained Arm Movements in Chronic Hemiparesis. Exp. Brain Res, 2004, vol. 156, pp. 458–470. DOI: 10.1007/s00221-003-1807-8
3. Bernstein N. The Coordination and Regulation of Movement. London: Pergamon Press, 1967, 196 p.
4. Blank A., O’Malley M.K., Francisco G.E., Contreras-Vidal G.L. A Pre-Clinical Framework for Neural Control of a Therapeutic Upper-Limb Exoskeleton. San Diego, CA: IEEE, 2013, pp. 1159–1162. DOI: 10.1109/NER.2013.6696144
5. Brackbill E.A., Mao Y., Agrawal S.K., Annapragada M., Dubey V.N. Dynamics and Control of a 4-dof Wearable Cable-Driven Upper Arm Exoskeleton. Kobe: IEEE, 2009, pp. 2300-2305. DOI: 10.1109/ROBOT.2009.5152545
6. Carignan C., Liszka M., Roderick S. Design of an Arm Exoskeleton with Scapula Motion for Shoulder Rehabilitation. Seattle, WA: IEEE, 2005, pp. 524–531. DOI: 10.1109/ICAR.2005.1507459
7. Carignan C., Tang J., Roderick S., Naylor M. A Configuration-Space Approach to Controlling a Rehabilitation Arm Exoskeleton. Noordwijk: IEEE, 2007, pp. 179–187. DOI: 10.1109/ICORR.2007.4428425
8. Culmer P.R., Jackson A.E., Makower S.G., Cozens J.A., Levesley M.C., Mon-Williams M. et al. A Novel Robotic System for Quantifying Arm Kinematics and Kinetics: Description and Evaluation in Therapist-Assisted Passive Arm Movements Post-Stroke. J. Neurosci. Methods, 2011, vol. 197, pp. 259–269. DOI: 10.1016/j.jneumeth.2011.03.004
9. DeJong G., Smout J., Horn D., Gassaway J., Maulden A. Timing of Initiation of Rehabilitation After Stroke. Arch. Phys. Med. Rehabil., 2015, vol. 86, pp. 34–40.
10. Ellis M.D., Drogos J., Carmona C., Keller T., Dewald J.P. Neck Rotation Modulates Flexion Synergy Torques, Indicating an Ipsilateral Reticulospinal Source for Impairment in Stroke. J. Neurophysiol, 2012, vol. 108, pp. 3096–3104. DOI: 10.1152/jn.01030.2011
11. Ellis M.D., Sukal T., DeMott T., Dewald J.P. Augmenting Clinical Evaluation of Hemiparetic Arm Movement with a Laboratory-Based Quantitative Measurement of Kinematics as a Function of Limb Loading. Neurorehabil. Neural Repair, 2008, vol. 22, pp. 321–329. DOI: 10.1177/1545968307313509
12. Fink M., Prada C., Wu F., Cassereau D. Self-Focusing with Time-Reversal Mirror in Inhomogeneous Media. Proc. IEEE Ultrason. Symp., 1989, pp. 681–686. DOI: 10.1109/ULTSYM.1989.67072
13. French A., Pehlivan U., O’Malley K. Current Trends in Robot-Assisted Upper-Limb Stroke Rehabilitation: Promoting Patient Engagement in Therapy. Curr Phys Med Rehabil Rep, 2014, vol. 2, pp. 184–195. DOI: 10.1007/s40141-014-0056-z
14. Galinski D., Sapin J., Dehez B. Optimal Design of an Alignment-Free Two-Dof Rehabilitation Robot for the Shoulder Complex. 2013 IEEE International Conference on Rehabilitation Robotics (ICORR) (IEEE), 2013, pp. 1–7. DOI: 10.1109/ICORR.2013.6650502
15. Klamroth-Marganska V., Blanco J., Campen K., Curt A., Dietz V., Ettlin T. et al. Three-Dimensional, Task-Specific Robot Therapy of the Arm After Stroke: a Multicentre, Parallel Group Randomised Trial. Lancet Neurol, 2014, vol. 13, pp. 159–166. DOI: 10.1016/S1474-4422(13)70305-3
16. Kwakkel G., Kollen B., Lindeman E. Understanding the Pattern of Functional Recovery after Stroke: Facts and Theories. Restor. Neurol. Neurosci., 2004, vol. 22, pp. 281–299.
17. Namdari S., Horneff J., Baldwin K., Keenan M. Muscle Releases to Improve Passive Motion and Relieve Pain in Patients with Spastic Hemiplegia and Elbow Flexion Contractures. J Shoulder Elbow Surg, 2012, vol. 21, pp. 1357–1362. DOI: 10.1016/j.jse.2011.09.029
18. Ramachandran V.S., Rogers-Ramachandran D., Cobb S. Touching the Phantom Limb. Nature, 1995, vol. 377, pp. 489–490. DOI: 10.1038/377489a0
19. Regenbrecht H.T., Franz E.A., McGregor G., Dixon B.G., Hoermann S. Be+yond the Looking Glass: Fooling the Brain with the Augmented Mirror Box. Presence, 2011, vol. 20, pp. 559–576. DOI: 10.1162/PRES_a_00082
20. Roby-Brami A., Jacobs S., Bennis N., Levin M.F. Hand Orientation for Grasping and Arm Joint Rotation Patterns in Healthy Subjects and Hemiparetic Stroke Patients. Brain Res, 2003, vol. 969, pp. 217–229. DOI: 10.1016/S0006-8993(03)02334-5

21. Salter R.B., Simmonds D.F., Malcolm B.W., Rumble E.J., MacMichael D., Clements N.D. The Biological Effect of Continuous Passive Motion on the Healing of Full-Thickness Defects in Articular Cartilage. An Experimental Investigation in the Rabbit. J Bone Joint Surg Am, 1980, vol. 62, pp. 1232–1251. DOI: 10.2106/00004623-198062080-00002
22. Shawn W.O., Giori J. Continuous Passive Motion (CPM): Theory and Principles of Clinical Application. J Rehabil Res Dev, 2000, vol. 37, pp. 179–188.
23. Song Z., Guo S., Pang M., Zhang S., Xiao N., Gao B., et al. Implementation of Resistance Training Using an Upper-Limb Exoskeleton Rehabilitation Device for Elbow Joint. J. Med. Biol. Eng, 2014, vol. 34, pp. 188–196. DOI: 10.5405/jmbe.1337
24. Sukal-Moulton T., Krosschell K.J., Gaebler-Spira D.J., Dewald J.P. Motor Impairment Factors Related to Brain Injury Timing in Early Hemiparesis. Part I: Expression of Upper-Extremity Weakness. Neurorehabil Neural Repair, 2014, vol. 28, pp. 13–23. DOI: 10.1177/1545968313500564
25. Ver C., Hofgart G., Menyhart L., Kardos L., Csiba L. Ankle-Foot Continuous Passive Motion Device for Mobilization of Acute Stroke Patients. OJTR, 2015, vol. 3, pp. 11–40. DOI: 10.4236/ojtr.2015.32004
26. Volpe B.T., Lynch D., Rykman-Berland A., Ferraro M., Galgano M., Hogan N. et al. Intensive Sensorimotor Arm Training Mediated by Therapist or Robot Improves Hemiparesis in Patients with Chronic Stroke. Neurorehabil. Neural Repair, 2008, vol. 22, pp. 305–310. DOI: 10.1177/1545968307311102
27. Zhang L.Q., Park H.S., Ren Y. Developing an Intelligent Robotic Arm for Stroke Rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics (IEEE), 2007, pp. 984–993. DOI: 10.1109/ICORR.2007.4428543




DOI (PDF (English)): http://dx.doi.org/10.14529/hsm180311

(c) 2018 ЧЕЛОВЕК. СПОРТ. МЕДИЦИНА

Лицензия Creative Commons
Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.