HEART RATE TURBULENCE AND HEART RATE VARIABILITY IN PERSONS WITH VARIOUS BLOOD PRESSURE

Keywords: Heart rate variability, heart rate turbulence, beginning of heart rate turbulence, turbulence slope

Abstract

Aim. The article deals with factor and regression analysis of heart rate variability and heart rate turbulence during Holter monitoring in persons with various blood pressure. Materials and methods. 68 persons aged 56.21 ± 1.06 participated in the study (48.5% female participants). We analyzed 24-hour ECG recordings obtained with the help of a Holter monitor and hardware software complex ‘Kardiotekhnika-04’ (INCART). The results obtained were interpreted using a standard diagnostic scheme proposed by the Russian society of cardiology in 2013. We also assessed heart rate turbulence and heart rate variability using a standard procedure. We used the methods of descriptive statistics to process continuous numerical data. We studied continuous and interval variables with the help of factor analysis and used the data obtained to conduct regression analysis. Results. The analysis revealed that the variables studied depend on each other, while the most important factor is, obviously, arterial blood pressure. Conclusion. The results obtained prove that the main reason of heart rate variability and heart rate turbulence is an increase in arterial blood pressure.

References

1. Redon J. et al. [National Recommendations for the Treatment of Arterial Hypertension ESH / ESC 2013]. Rossiyskiy kardiologicheskiy zhurnal [Russian Journal of Cardiology], 2014, no. 1 (105), pp. 7–94. (in Russ.)
2. Komolyatova V.N. et al. [National Russian Recommendations on the Application of the Holter Monitoring Method in Clinical Practice]. Rossiyskiy kardiologicheskiy zhurnal [Russian Journal of Cardiology], 2014, no. 2, pp. 6–71. (in Russ.)
3. Balczewska D., Ptaszynski P., Cygankiewicz I. Baroreflex Sensitivity: Measurement and Clinical Aspects. Przegl Lek, 2015, no. 72 (11), pp. 682–689.
4. Erdem A. et al. Cardiac Autonomic Function Measured by Heart Rate Variability and Turbulence in Pre-Hypertensive Subjects. Clinical and Experimental Hypertension, 2013, vol. 35, iss. 2, pp. 102–107. DOI: 10.3109/10641963.2012.690475
5. Chen H.Y. Circadian Patterns of Heart Rate Turbulence, Heart Rate Variability and Their Relationship. Cardiol Res, 2011, no. 2 (3), pp. 112–118. DOI: 10.4021/cr41w. Epub 2011 May 20. DOI: 10.4021/cr41w
6. Song C.L., Zhang X., Liu Y.K. et al. Heart Rate Turbulence in Masked Hypertension and White-Coat Hypertension. Eur. Rev. Med Pharmacol. Sci., 2015, no. 19 (8), pp. 457–460.
7. Bauer A. et al. Heart Rate Turbulence to Guide Treatment for Prevention of Sudden Death. Journal of Cardiovascular Pharmacology, 2010, vol. 55, iss. 6, pp. 531–538. DOI: 10.1097/FJC.0b013e3181d4c973
8. Bauer A. et al. Heart Rate Turbulence: Standards of Measurement, Physiological Interpretation, and Clinical Use. International Society for Holter and Noninvasive Electrophysiology Consensus. J. Am. Coll. Cardiology, 2008, vol. 52, suppl. 17, pp. 1353–1365. DOI: 10.1016/j.jacc.2008.07.041
9. Kilit C., Pasali T., Onrat E. Autonomic Modulation in Hypertension Without Hypertrophy. Acta Cardiol, 2015, no. 70 (6), pp. 21–27.
10. Kossaify A., Garcia A., Ziade F. Assessment of Heart Rate Turbulence in Hypertensive Patients: Rationale, Perspectives, and Insight into Autonomic Nervous System Dysfunction. Heart Views, 2014, no. 15 (3), pp. 8–73.

References on translit

1. Redon J. et al. [National Recommendations for the Treatment of Arterial Hypertension ESH / ESC 2013]. Rossiyskiy kardiologicheskiy zhurnal [Russian Journal of Cardiology], 2014, no. 1 (105), pp. 7–94. (in Russ.)
2. Komolyatova V.N. et al. [National Russian Recommendations on the Application of the Holter Monitoring Method in Clinical Practice]. Rossiyskiy kardiologicheskiy zhurnal [Russian Journal of Cardiology], 2014, no. 2, pp. 6–71. (in Russ.)
3. Balczewska D., Ptaszynski P., Cygankiewicz I. Baroreflex Sensitivity: Measurement and Clinical Aspects. Przegl Lek, 2015, no. 72 (11), pp. 682–689.
4. Erdem A. et al. Cardiac Autonomic Function Measured by Heart Rate Variability and Turbulence in Pre-Hypertensive Subjects. Clinical and Experimental Hypertension, 2013, vol. 35, iss. 2, pp. 102–107. DOI: 10.3109/10641963.2012.690475
5. Chen H.Y. Circadian Patterns of Heart Rate Turbulence, Heart Rate Variability and Their Relationship. Cardiol Res, 2011, no. 2 (3), pp. 112–118. DOI: 10.4021/cr41w. Epub 2011 May 20. DOI: 10.4021/cr41w
6. Song C.L., Zhang X., Liu Y.K. et al. Heart Rate Turbulence in Masked Hypertension and White-Coat Hypertension. Eur. Rev. Med Pharmacol. Sci., 2015, no. 19 (8), pp. 457–460.
7. Bauer A. et al. Heart Rate Turbulence to Guide Treatment for Prevention of Sudden Death. Journal of Cardiovascular Pharmacology, 2010, vol. 55, iss. 6, pp. 531–538. DOI: 10.1097/FJC.0b013e3181d4c973
8. Bauer A. et al. Heart Rate Turbulence: Standards of Measurement, Physiological Interpretation, and Clinical Use. International Society for Holter and Noninvasive Electrophysiology Consensus. J. Am. Coll. Cardiology, 2008, vol. 52, suppl. 17, pp. 1353–1365. DOI: 10.1016/j.jacc.2008.07.041
9. Kilit C., Pasali T., Onrat E. Autonomic Modulation in Hypertension Without Hypertrophy. Acta Cardiol, 2015, no. 70 (6), pp. 21–27.
10. Kossaify A., Garcia A., Ziade F. Assessment of Heart Rate Turbulence in Hypertensive Patients: Rationale, Perspectives, and Insight into Autonomic Nervous System Dysfunction. Heart Views, 2014, no. 15 (3), pp. 8–73.
Published
2018-12-01
How to Cite
Tuyzarova, I., Kozlov, V., Nikulina, A., & Shukanov, A. (2018). HEART RATE TURBULENCE AND HEART RATE VARIABILITY IN PERSONS WITH VARIOUS BLOOD PRESSURE. Human. Sport. Medicine, 18(4), 64-72. https://doi.org/10.14529/hsm180410
Section
Physiology