АНАЛИЗ ПЕРСПЕКТИВНЫХ НАПРАВЛЕНИЙ В ПРОЕКТИРОВАНИИ ПРОТЕЗОВ КОЛЕННОГО СУСТАВА НОВОГО ПОКОЛЕНИЯ

  • В. В. Епишев Южно-Уральский государственный университет, Челябинск, Россия https://orcid.org/0000-0002-7284-7388 epishev74@mail.ru
  • В. В. Эрлих Южно-Уральский государственный университет, Челябинск, Россия https://orcid.org/0000-0003-4416-1925 erlih-vadim@mail.ru
  • С. Б. Сапожников Южно-Уральский государственный университет, Челябинск, Россия https://orcid.org/0000-0002-7022-4865 sapozhnikovsb@susu.ru
  • Я. В. Бурнашов Южно-Уральский государственный университет, Челябинск, Россия https://orcid.org/0000-0001-8978-5526 yaroslav.burnashov1337@mail.ru
Ключевые слова: протез коленного сустава, активный протез, пассивный протез, кинематика, проектирование

Аннотация

Цель: определение современного состояния исследований при проектировании протезов коленного сустава. Материалы и методы. Был проведен анализ публикаций, индексированных в Web of Science, Google Scholar и Scopus, для рассмотрения перспективных направлений и обобщения современных подходов к проектированию протезов коленного сустава. Результаты. Российский рынок – один из крупнейших по числу пациентов, нуждающихся в протезировании. Ампутации нижних конечностей составляют почти 97 % от всех ампутаций, что указывает на актуальность проблемы протезирования именно нижних конечностей. Современный подход к разработке перспективных конструкций протезов нижних конечностей направлен на максимально возможное повторение биомеханики ходьбы человека Выбор конструкции протеза нижних конечностей зависит от уровня подвижности человека и его способности им пользоваться. Ключевыми функциями протеза коленного сустава являются стабильность и устойчивость. Одним из перспективных направлением развития протезирования являются протезы ног с микропроцессорным управлением (Micro-processor controlled prosthetic legs – MPCPL). Важнейшей частью протезов MPCPL является протез коленного сустава, управляемого микропроцессором (Microprocessor controlled knee – MPK). Использование внешних датчиков и технических устройств позволяет автоматически регулировать характеристики демпфирования, что обеспечивает более широкий диапазон скорости передвижения, повышенную стабильность на различных поверхностях, включая неровные дороги, лестницы и пандусы. Заключение. При проектировании протеза коленного сустава необходимо одновременно учитывать возможность воссоздания оптимальной кинематики движения, минимальный вес, максимальный потенциал его индивидуализации при снижении стоимости для конкретного потребителя.

Информация об авторах

В. В. Епишев , Южно-Уральский государственный университет, Челябинск, Россия

Кандидат биологических наук, директор научно-исследова­тельского центра спортивной науки, доцент кафедры теории и методики физической культуры и спорта, Южно-Уральский государственный университет, Челябинск, Россия.

В. В. Эрлих , Южно-Уральский государственный университет, Челябинск, Россия

Доктор биологических наук, доцент, директор Института спорта, туризма и сервиса, профессор кафедры теории и методики физической культуры и спорта, Южно-Уральский государственный университет, Челябинск, Россия.

С. Б. Сапожников , Южно-Уральский государственный университет, Челябинск, Россия

Доктор технических наук, профессор, главный научный сотрудник кафедры технической механики, Южно-Уральский государственный университет, Челябинск, Россия.

Я. В. Бурнашов , Южно-Уральский государственный университет, Челябинск, Россия

Студент кафедры теории и методики физической культуры и спорта, Южно-Уральский государственный университет, Челябинск, Россия.

Литература

1. A Body Parts. How the Prosthetics Market in Russia Took Off. Available at: https://www.rbc.ru/ industries/news/65377d919a7947c1f7a2dd21
2. Andrysek J., García D., Rozbaczylo C. et al. Biomechanical Responses of Young Adults with Unilateral Transfemoral Amputation Using Two Types of Mechanical Stance Control Prosthetic knee Joints. Prosthet. Orthot. Int., 2020, no. 44, pp. 314–322. DOI: 10.1177/0309364620916385
3. Andrysek J., Michelini A., Eshraghi A. et al. Gait Performance of Friction-Based Prosthetic Knee Joint Swing-Phase Controllers in Under-Resourced Settings. Prosthesis, 2022, no. 4, pp. 125–135. DOI: 10.3390/prosthesis4010013
4. Azimi V., Shu T., Zhao H. et al. Model-Based Adaptive Control of Transfemoral Prostheses: Theory, Simulation, and Experiments. IEEE Trans. Syst. Man Cybern. Syst., 2021, no. 51, pp. 1174–1191. DOI: 10.1109/TSMC.2019.2896193
5. Bartlett H.L., King S.T., Goldfarb M., Lawson B.E. Design and Assist-As-Needed Control of a Lightly Powered Prosthetic Knee. IEEE Trans. Med. Robot. Bionics, 2022, no. 4, pp. 490–501. DOI: 10.1109/TMRB.2022.3161068
6. Best T., Welker C., Rouse E., Gregg R. Data-Driven Variable Impedance Control of a Powered Knee-Ankle Prosthesis for Adaptive Speed and Incline Walking. IEEE Trans. Robot., 2023, no. 39, pp. 2151–2169. DOI: 10.1109/TRO.2022.3226887
7. Bittibssi T.M., Zekry A., Genedy M.A., Maged S.A. Implementation of Surface Electromyography Controlled Prosthetics Limb Based on Recurrent Neural Network. Concurr. Comput. Pract. Exp., 2022, no. 34, e6848. DOI: 10.1002/cpe.6848
8. Cao W., Yu H., Zhao W. et al. The Comparison of Transfemoral Amputees Using Mechanical and Microprocessor- Controlled Prosthetic knee Under Different Walking Speeds: A Randomized Cross-over Trial. Technol. Health Care, 2018, no. 26, pp. 581–592. DOI: 10.3233/THC-171157
9. Chen X., Chen C., Wang Y. et al. A Piecewise Monotonic Gait Phase Estimation Model for Controlling a Powered Transfemoral Prosthesis in Various Locomotion Modes. IEEE Robot. Autom. Lett., 2022, no. 7, pp. 9549–9556. DOI: 10.1109/LRA.2022.3191945
10. Cheng S., Bolívar-Nieto E., Welker C.G., Gregg R.D. Modeling the Transitional Kinematics between Variable-Incline Walking and Stair Climbing. IEEE Trans. Med. Robot. Bionics, 2022, no. 4, pp. 840–851. DOI: 10.1109/TMRB.2022.3185405
11. Cortino R.J., Bolívar-Nieto E., Best T.K., Gregg R.D. Stair Ascent Phase-Variable Control of a Powered Knee-Ankle Prosthesis. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022, pp. 5673–5678. DOI: 10.1109/ICRA46639.2022. 9811578
12. Elgamsy R., Awad M.I., Ramadan N. et al. Localization of Composite Prosthetic Feet: Manufacturing Processes and Production Guidelines. Sci Rep, 2023, no. 13, 17421. DOI: 10.1038/s41598-023-44008-7
13. Geng Y., Wu Z., Chen Y. et al. The Control Methods of Knee-Ankle-Toe Active Transfemoral Prosthesis in Stance Phase. Asian Journal Control., 2022, no. 25, pp. 976–988. DOI: 10.1002/asjc.2848
14. Guercini L., Tessari F., Driessen J. et al. An Over-Actuated Bionic Knee Prosthesis: Modeling, Design and Preliminary Experimental Characterization. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022, pp. 5467–5473. DOI: 10.1109/ICRA46639.2022.9812197
15. Gupta R., Agarwal R. Single Channel EMG-based Continuous Terrain Identification with Simple Classifier for Lower Limb Prosthesis. Biocybern. Biomed. Eng., 2019, no. 39, pp. 775–788. DOI: 10.1016/j.bbe.2019.07.002
16. Hong W., Paredes V., Chao K. et al. Consolidated Control Framework to Control a Powered Transfemoral Prosthesis Over Inclined Terrain Conditions. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 2838–2844. DOI: 10.1109/ICRA.2019.8794140
17. Hood S., Creveling S., Gabert L. et al. Powered Knee and Ankle Prostheses Enable Natural Ambulation on Level Ground and Stairs for Individuals with Bilateral Above-knee Amputation: A Case Study. Science Rep., 2022, no. 12, 15465. DOI: 10.1038/s41598-022-19701-8
18. Hood S., Gabert L., Lenzi T. Powered Knee and Ankle Prosthesis with Adaptive Control Enables Climbing Stairs With Different Stair Heights, Cadences, and Gait Patterns. IEEE Trans. Robot, 2022, no. 38, pp. 1430–1441. DOI: 10.1109/TRO.2022.3152134
19. Lee J.T., Bartlett H.L., Goldfarb M. Design of a Semi-Powered Stance-Control Swing-Assist Transfemoral Prosthesis. IEEE ASME Trans. Mechatron., 2020, no. 25, pp. 175–184. DOI: 10.1109/TMECH.2019.2952084
20. Lenzi T., Cempini M., Hargrove L., Kuiken T. Design, Development, and Testing of a Lightweight Hybrid Robotic knee Prosthesis. International Journal Robot. Research, 2018, no. 37, 027836491878599. DOI: 10.1177/0278364918785993
21. Liang W., Qian Z., Chen W. et al. Mechanisms and Component Design of Prosthetic Knees: A Review from a Biomechanical Function Perspective. Front. Bioeng. Biotechnology, 2022, no. 10, 950110. DOI: 10.3389/fbioe.2022.950110
22. Mazumder A., Hekman E.E.G., Carloni R. An Adaptive Hybrid Control Architecture for an Active Transfemoral Prosthesis. IEEE Access, 2022, no. 10, pp. 52008–52019. DOI: 10.1109/ACCESS.2022.3173348
23. Murabayashi M., Inoue K. New Function and Passive Mechanism of Transfemoral Prosthetic knee for Running Safely. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 2022, no. 11–15, pp. 4334–4337. DOI: 10.1109/EMBC48229.2022.9870830
24. Murabayashi M., Mitani T., Inoue K. Development and Evaluation of a Passive Mechanism for a Transfemoral Prosthetic Knee That Prevents Falls during Running Stance. Prosthesis, 2022, no. 4, pp. 172–183. DOI: 10.3390/prosthesis4020018
25. Muscolino J.E. Kinesiology-E-Book: The Skeletal System and Muscle Function. Elsevier Health Sciences, 2010.
26. Prosthetics & Orthotics Market Size & Share Analysis – Growth Trends & Fore-casts (2023–2028).
27. Prosthetics and Orthotics Market by Type, End-user, and Geography – Forecast and Analysis 2023–2027.
Using Mechanical Four-bar Linkage and Pneumatic System Prosthetic knee Joints. Journal Pros-thet. Orthot. Science Technology, 2022, no. 1, pp. 28–33. DOI: 10.36082/jpost.v1i1.647
29. Rasheed F., Martin S., Tse K.M. Design, Kinematics and Gait Analysis, of Prosthetic Knee Joints: A Systematic Review. Bioengineering, 2023, no. 10 (7), p. 773. DOI: 10.3390/bioengineering10070773
30. Schulte R.V., Zondag M., Buurke J.H., Prinsen E.C. Multi-Day EMG-Based Knee Joint Torque Estimation Using Hybrid Neuromusculoskeletal Modelling and Convolutional Neural Networks. Front. Robot. AI, 2022, no. 9, 869476. DOI: 10.3389/frobt.2022.869476
31. Sturk J.A., Lemaire E.D., Sinitski E.H. et al. Maintaining Stable Transfemoral Amputee Gait on Level, Sloped and Simulated Uneven Conditions in a Virtual Environment. Disabil. Rehabilitation Assist. Technology, 2019, no. 14, pp. 226–235. DOI: 10.1080/17483107.2017.1420250
32. Tran M., Gabert L., Cempini M., Lenzi T. A Lightweight, Efficient Fully Powered Knee Prosthesis with Actively Variable Transmission. IEEE Robot. Autom. Lett., 2019, no. 4, pp. 1186–1193. DOI: 10.1109/LRA.2019.2892204
33. Wang S. Biomechanical Analysis of the Human Knee Joint. Journal Healthc. Eng., 2022, 9365362. DOI: 10.1155/2022/9365362
34. Warner H., Khalaf P., Richter H. et al. Early Evaluation of a Powered Transfemoral Pros-thesis with Force-Modulated Impedance Control and Energy Regeneration. Med. Eng. Physiology, 2021, no. 100, 103744. DOI: 10.1016/j.medengphy.2021.103744
35. Yang C., Xi X., Chen S. et al. SEMG-based Multi-features and Predictive Model for Knee-joint-angle Estimation. AIP Adv., 2019, no. 9, 095042. DOI: 10.1063/1.5120470
36. Zhang Y., Liu S., Mo X. et al. Optimization and Dynamics of Six-bar Mechanism Bionic Knee. Proceedings of the 2019 WRC Symposium on Advanced Robotics and Automation (WRC SARA), Beijing, China, 2019, pp. 91–96. DOI: 10.1109/WRC-SARA.2019.8931941

References

1. A Body Parts. How the Prosthetics Market in Russia Took Off. Available at: https://www.rbc.ru/ industries/news/65377d919a7947c1f7a2dd21
2. Andrysek J., García D., Rozbaczylo C. et al. Biomechanical Responses of Young Adults with Unilateral Transfemoral Amputation Using Two Types of Mechanical Stance Control Prosthetic knee Joints. Prosthet. Orthot. Int., 2020, no. 44, pp. 314–322. DOI: 10.1177/0309364620916385
3. Andrysek J., Michelini A., Eshraghi A. et al. Gait Performance of Friction-Based Prosthetic Knee Joint Swing-Phase Controllers in Under-Resourced Settings. Prosthesis, 2022, no. 4, pp. 125–135. DOI: 10.3390/prosthesis4010013
4. Azimi V., Shu T., Zhao H. et al. Model-Based Adaptive Control of Transfemoral Prostheses: Theory, Simulation, and Experiments. IEEE Trans. Syst. Man Cybern. Syst., 2021, no. 51, pp. 1174–1191. DOI: 10.1109/TSMC.2019.2896193
5. Bartlett H.L., King S.T., Goldfarb M., Lawson B.E. Design and Assist-As-Needed Control of a Lightly Powered Prosthetic Knee. IEEE Trans. Med. Robot. Bionics, 2022, no. 4, pp. 490–501. DOI: 10.1109/TMRB.2022.3161068
6. Best T., Welker C., Rouse E., Gregg R. Data-Driven Variable Impedance Control of a Powered Knee-Ankle Prosthesis for Adaptive Speed and Incline Walking. IEEE Trans. Robot., 2023, no. 39, pp. 2151–2169. DOI: 10.1109/TRO.2022.3226887
7. Bittibssi T.M., Zekry A., Genedy M.A., Maged S.A. Implementation of Surface Electromyography Controlled Prosthetics Limb Based on Recurrent Neural Network. Concurr. Comput. Pract. Exp., 2022, no. 34, e6848. DOI: 10.1002/cpe.6848
8. Cao W., Yu H., Zhao W. et al. The Comparison of Transfemoral Amputees Using Mechanical and Microprocessor- Controlled Prosthetic knee Under Different Walking Speeds: A Randomized Cross-over Trial. Technol. Health Care, 2018, no. 26, pp. 581–592. DOI: 10.3233/THC-171157
9. Chen X., Chen C., Wang Y. et al. A Piecewise Monotonic Gait Phase Estimation Model for Controlling a Powered Transfemoral Prosthesis in Various Locomotion Modes. IEEE Robot. Autom. Lett., 2022, no. 7, pp. 9549–9556. DOI: 10.1109/LRA.2022.3191945
10. Cheng S., Bolívar-Nieto E., Welker C.G., Gregg R.D. Modeling the Transitional Kinematics between Variable-Incline Walking and Stair Climbing. IEEE Trans. Med. Robot. Bionics, 2022, no. 4, pp. 840–851. DOI: 10.1109/TMRB.2022.3185405
11. Cortino R.J., Bolívar-Nieto E., Best T.K., Gregg R.D. Stair Ascent Phase-Variable Control of a Powered Knee-Ankle Prosthesis. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022, pp. 5673–5678. DOI: 10.1109/ICRA46639.2022. 9811578
12. Elgamsy R., Awad M.I., Ramadan N. et al. Localization of Composite Prosthetic Feet: Manufacturing Processes and Production Guidelines. Sci Rep, 2023, no. 13, 17421. DOI: 10.1038/s41598-023-44008-7
13. Geng Y., Wu Z., Chen Y. et al. The Control Methods of Knee-Ankle-Toe Active Transfemoral Prosthesis in Stance Phase. Asian Journal Control., 2022, no. 25, pp. 976–988. DOI: 10.1002/asjc.2848
14. Guercini L., Tessari F., Driessen J. et al. An Over-Actuated Bionic Knee Prosthesis: Modeling, Design and Preliminary Experimental Characterization. In Proceedings of the 2022 International Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, 2022, pp. 5467–5473. DOI: 10.1109/ICRA46639.2022.9812197
15. Gupta R., Agarwal R. Single Channel EMG-based Continuous Terrain Identification with Simple Classifier for Lower Limb Prosthesis. Biocybern. Biomed. Eng., 2019, no. 39, pp. 775–788. DOI: 10.1016/j.bbe.2019.07.002
16. Hong W., Paredes V., Chao K. et al. Consolidated Control Framework to Control a Powered Transfemoral Prosthesis Over Inclined Terrain Conditions. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 2019, pp. 2838–2844. DOI: 10.1109/ICRA.2019.8794140
17. Hood S., Creveling S., Gabert L. et al. Powered Knee and Ankle Prostheses Enable Natural Ambulation on Level Ground and Stairs for Individuals with Bilateral Above-knee Amputation: A Case Study. Science Rep., 2022, no. 12, 15465. DOI: 10.1038/s41598-022-19701-8
18. Hood S., Gabert L., Lenzi T. Powered Knee and Ankle Prosthesis with Adaptive Control Enables Climbing Stairs With Different Stair Heights, Cadences, and Gait Patterns. IEEE Trans. Robot, 2022, no. 38, pp. 1430–1441. DOI: 10.1109/TRO.2022.3152134
19. Lee J.T., Bartlett H.L., Goldfarb M. Design of a Semi-Powered Stance-Control Swing-Assist Transfemoral Prosthesis. IEEE ASME Trans. Mechatron., 2020, no. 25, pp. 175–184. DOI: 10.1109/TMECH.2019.2952084
20. Lenzi T., Cempini M., Hargrove L., Kuiken T. Design, Development, and Testing of a Lightweight Hybrid Robotic knee Prosthesis. International Journal Robot. Research, 2018, no. 37, 027836491878599. DOI: 10.1177/0278364918785993
21. Liang W., Qian Z., Chen W. et al. Mechanisms and Component Design of Prosthetic Knees: A Review from a Biomechanical Function Perspective. Front. Bioeng. Biotechnology, 2022, no. 10, 950110. DOI: 10.3389/fbioe.2022.950110
22. Mazumder A., Hekman E.E.G., Carloni R. An Adaptive Hybrid Control Architecture for an Active Transfemoral Prosthesis. IEEE Access, 2022, no. 10, pp. 52008–52019. DOI: 10.1109/ACCESS.2022.3173348
23. Murabayashi M., Inoue K. New Function and Passive Mechanism of Transfemoral Prosthetic knee for Running Safely. In Proceedings of the 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, UK, 2022, no. 11–15, pp. 4334–4337. DOI: 10.1109/EMBC48229.2022.9870830
24. Murabayashi M., Mitani T., Inoue K. Development and Evaluation of a Passive Mechanism for a Transfemoral Prosthetic Knee That Prevents Falls during Running Stance. Prosthesis, 2022, no. 4, pp. 172–183. DOI: 10.3390/prosthesis4020018
25. Muscolino J.E. Kinesiology-E-Book: The Skeletal System and Muscle Function. Elsevier Health Sciences, 2010.
26. Prosthetics & Orthotics Market Size & Share Analysis – Growth Trends & Fore-casts (2023–2028).
27. Prosthetics and Orthotics Market by Type, End-user, and Geography – Forecast and Analysis 2023–2027.
Using Mechanical Four-bar Linkage and Pneumatic System Prosthetic knee Joints. Journal Pros-thet. Orthot. Science Technology, 2022, no. 1, pp. 28–33. DOI: 10.36082/jpost.v1i1.647
29. Rasheed F., Martin S., Tse K.M. Design, Kinematics and Gait Analysis, of Prosthetic Knee Joints: A Systematic Review. Bioengineering, 2023, no. 10 (7), p. 773. DOI: 10.3390/bioengineering10070773
30. Schulte R.V., Zondag M., Buurke J.H., Prinsen E.C. Multi-Day EMG-Based Knee Joint Torque Estimation Using Hybrid Neuromusculoskeletal Modelling and Convolutional Neural Networks. Front. Robot. AI, 2022, no. 9, 869476. DOI: 10.3389/frobt.2022.869476
31. Sturk J.A., Lemaire E.D., Sinitski E.H. et al. Maintaining Stable Transfemoral Amputee Gait on Level, Sloped and Simulated Uneven Conditions in a Virtual Environment. Disabil. Rehabilitation Assist. Technology, 2019, no. 14, pp. 226–235. DOI: 10.1080/17483107.2017.1420250
32. Tran M., Gabert L., Cempini M., Lenzi T. A Lightweight, Efficient Fully Powered Knee Prosthesis with Actively Variable Transmission. IEEE Robot. Autom. Lett., 2019, no. 4, pp. 1186–1193. DOI: 10.1109/LRA.2019.2892204
33. Wang S. Biomechanical Analysis of the Human Knee Joint. Journal Healthc. Eng., 2022, 9365362. DOI: 10.1155/2022/9365362
34. Warner H., Khalaf P., Richter H. et al. Early Evaluation of a Powered Transfemoral Pros-thesis with Force-Modulated Impedance Control and Energy Regeneration. Med. Eng. Physiology, 2021, no. 100, 103744. DOI: 10.1016/j.medengphy.2021.103744
35. Yang C., Xi X., Chen S. et al. SEMG-based Multi-features and Predictive Model for Knee-joint-angle Estimation. AIP Adv., 2019, no. 9, 095042. DOI: 10.1063/1.5120470
36. Zhang Y., Liu S., Mo X. et al. Optimization and Dynamics of Six-bar Mechanism Bionic Knee. Proceedings of the 2019 WRC Symposium on Advanced Robotics and Automation (WRC SARA), Beijing, China, 2019, pp. 91–96. DOI: 10.1109/WRC-SARA.2019.8931941
Опубликован
2024-07-26
Как цитировать
Епишев, В., Эрлих, В., Сапожников, С., & Бурнашов, Я. (2024). АНАЛИЗ ПЕРСПЕКТИВНЫХ НАПРАВЛЕНИЙ В ПРОЕКТИРОВАНИИ ПРОТЕЗОВ КОЛЕННОГО СУСТАВА НОВОГО ПОКОЛЕНИЯ. Человек. Спорт. Медицина, 24(2), 189-198. https://doi.org/10.14529/hsm240224
Раздел
Восстановительная и спортивная медицина

Наиболее читаемые статьи этого автора (авторов)

1 2 > >>