PLANT ADAPTOGENS IN SPECIALIZED FOOD PRODUCTS AS A FACTOR OF HOMEOSTATIC REGULATION INVOLVING MICROBIOTA

Keywords: Adaptogens, microbiota, specialized nutrition, antioxidant activity, bioavailability.

Abstract

The aim of this study is to develop an adaptogenic drink based on the polyphenol complex of antioxidant activity optimized in terms of bioavailability. Materials and Methods. The study was performed on the base of the polyphenol complex of antioxidant activity made of taxifolin (Larix gmelinii extract with no less than 97.0 % of taxifolin) and plant extracts (Lonicera сaerulea L., Beta vulgaris L. ssp.vulgaris) obtained in the research laboratory of the department of Food and Biotechnologies in the South Ural State University. To increase solubility and bioavailability of taxifolin we used 20-minute 630 W ultrasonic impact, providing taxifolin nanostructuring. The plant extract consists of reconstituted extracts from Beta vulgaris L. ssp.vulgaris and Lonicera сaerulea L. in a 3:1 ratio with 0.1 % of taxifolin and the amount of dry substance of no less than 15 %. Taxifolin content in a final product is no less than 0.02 %. Results. It was established that taxifolin water solution is quite sensitive to ultrasonic cavitation. The morphological structure of taxifolin particles, treated with ultrasound, was close to a spherical shape. Particles were characterized by amorphous structure, which is positive for solubility and bioavailability properties. Antioxidant activity is 1.74–1.98 times higher than in the solutions obtained using a mechanical approach. This indicates the increased physiological value of solutions. The drink obtained on the base of beet and honeysuckle extracts with 0.1 % taxifolin had the total content of betanin and betaxanthine equaled 54 ± 2 mg/100 g and the total content of phenol substances of 194 ± 4 mg in terms of gallic acid. The consumption of a taxifolin plant extract-based drink results in the decrease of Streptococcus to significantly lower values. There is a shift in pH values in a range from 6.5 to 7.5 in comparison with the initial pH values of 5.5 ? 6.0 units. Conclusion. The combination of secondary metabolites (polyphenols) in the form of Lonicera сaerulea L. and Beta vulgaris L. ssp.vulgaris plant extracts with taxifolin is a very promising one for the technology of adaptogenic drinks to improve homeostatic mechanisms involving microbiota at the stage of oral intake.

References

1. Zavorokhina N.V., Solov’yeva M.P., Chugunova O.V., Pastushkova E.V., Fozilova V.V. [Vegetable Raw Materials of the Urals Region for the Production of Soft Drinks]. Pivo i napitki [Beer and Drinks], 2013, no. 4, pp. 28–31. (in Russ.)
2. Korul’kin D.Yu., Abilov Zh.A., Muzychkina R.A., Tolstikov G.A. Prirodnyye flavonoidy [Natural Flavonoids]. Novosibirsk, Theo Publ., 2007. 232 p.
3. Kalinina I.V., Potoroko I.Yu., Fatkullin R.I. [Results of the Effect of Ultrasonic Cavitation Effects on the Degree of Extraction of Biologically Active Substances From Plant Material]. Agrarnyy vestnik Urala [Agricultural Agrarian of the Urals], 2017, no. 10 (164), pp. 30–35. (in Russ.)
4. Cherno N.K., Lomaka E.V. [Stabilization of Betanine by Complexation with Arabinogalactan]. Izvestiya vuzov. Pishchevaya tekhnologiya [Izvestiya Vuzov. Food technology], 2013, no. 4, pp. 32–35. (in Russ.)
5. Chugunova O.V., Zavorokhina N.V. Ispol’zovaniye metodov degustatsionnogo analiza pri modelirovanii retseptur pishchevykh produktov s zadannymi potrebitel’skimi svoystvami: monografiya [Use of Methods of Tasting Analysis in the Modeling of Food Formulas with Specified
Consumer Properties. Monograph]. Ekaterinburg, Urals State University of Economics Publ., 2010. 148 p.
6. Shatilov A.V., Bogdanova O.G., Korobov A.V. [The Role of Antioxidants in the Body in Normal and Pathological Conditions]. Veterinarnaya patologiya [Veterinary Pathology], 2007, no. 2, pp. 207–211. (in Russ.)
7. Abad-Garcia B., Garmon-Lobato S., Berrueta L.A. Afragmentation Study of Dihydroquercetin Using Triple Quadrupole Mass Spectrometry and Its Application for Identification of Dihydroflavonols in Citrus Juices. Rapid Commun. Mass Spectrom., 2009, vol. 23, pp. 2785–2792. DOI: 10.1002/rcm.4182
8. Rogovskii V.S., Matiushin A.I., Shimanovskii N.L. et al. Antiproliferative and Antioxidant Activity of New Dihydroquercetin Derivatives. Eksp. Klin. Farmakol., 2010, vol. 73, pp. 39–42.
9. Fatkullin R., Popova N., Kalinina I. et al. Application of Ultrasonic Waves for the Improvement of Particle Dispersion in Drinks. Agronomy Research., 2017, vol. 15, pp. 1295–1303.
10. Krasulya O., Shestakov S., Bogush V. et al. Applications of Sonochemistry in Russian Food Processing Industry. Ultrasonics Sonochemistry, 2014, vol. 21, pp. 2112–2116. DOI: 10.1016/j.ultsonch.2014.03.015
11. Beckman K.B., Ames B.N. Endogenous Oxidative Damage of mtDNA. Mutation Research. Fundamental and Molecular Mechanisms of Mutagenesis, 1999, vol. 424, pp. 51–58. DOI: 10.1016/S0027-5107(99)00007-X
12. Czarniecka-Skubina E. Effect of Culinary Process on Beet Roots Quality. Electronic Journal of Polish Agricultural Universities, 2003, vol. 6.
13. Liang L., Gao C., Luo M. et al. Dihydroquercetin (DHQ) Induced HO-1 and NQO1 Expression Against Oxidative Stress Through the Nrf2-Dependent Antioxidant Pathway. J. Agric. Food Chem., 2013, vol. 61, pp. 2755–2761. DOI: 10.1021/jf304768p
14. Teselkin Y.O., Babenkova I., Kolhir V. et al. Dihydroquercetin as a Means of Antioxidative Defence in Rats with Tetrachloromethane Hepatitis. Phytother. Res., 2000, vol. 14, pp. 160–162. DOI: 10.1002/(SICI)1099-1573(200005)14:3<160::AID-PTR555>3.0.CO;2-Y
15. Hsu Y.J., Chiu C.C., Li Y.P. et al. Effect of Intestinal Microbiota on Exercise Performance in Mice. J Strength Cond Res., 2015, vol. 29, pp. 552–558. DOI: 10.1519/JSC.0000000000000644
16. Zu Y., Wu W., Zhao X. et al. Enhancement of Solubility, Antioxidant Ability and Bioavailability of Taxifolin Nanoparticles by Liquid Antisolvent Precipitation Technique. International Journal of Pharmaceutics, 2014, vol. 471, pp. 366–376. DOI: 10.1016/j.ijpharm.2014.05.049
17. O'Sullivan O., Cronin O., Clarke S.F. et al. Exercise and the Microbiota. Gut Microbes, 2015, vol. 6, pp. 131–136. DOI: 10.1080/19490976.2015.1011875
18. Lambert J.E., Myslicki J.P., Bomhof M.R. et al. Exercise Training Modifies Gut Microbiota in Normal and Diabetic Mice. Appl Physiol Nutr Metab., 2015, vol. 40, pp. 749–752. DOI: 10.1139/apnm-2014-0452
19. Ashokkumar M., Lee J., Zisu B. et al. Hot Topic: Sonication Increases the Heat Stability of Whey Proteins. Journal of Dairy Science, 2009, vol. 92, pp. 5353–5356. DOI: 10.3168/jds.2009-2561
20. Hyland N., Stanton C. The Gut-Brain Axis. Dietary, Probiotic, and Prebiotic Interventions on the Microbiota. Academic Press., 2016. 508 p.
21. Zu S., Yang L., Huang J. et al. Micronization of Taxifolin by Supercritical Antisolvent Process and Evaluation of Radical Scavenging Activity. Int. J. Mol. Sci., 2012, vol. 13, pp. 8869–8881. DOI: 10.3390/ijms13078869
22. Mittler R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends in Plant Science, 2002, vol. 7 (9), pp. 405–410. DOI: 10.1016/S1360-1385(02)02312-9
23. Nemzer B. Betalainic and Nutritional Profiles of Pigment-Enriched Red Beet Root (Beta vulgaris L.) Dried Extracts. Food Chemistry, 2011, vol. 127, pp. 42–53. DOI: 10.1016/j.foodchem.2010.12.081
24. Oral Microbiota Levels May Indicate Pancreatic Cancer Presented at: 2014 Meeting of the American Society for Microbiology; May 17–20; Boston.
25. Pyne D.B., West N.P., Cox A.J. Cripps Probiotics Supplementation for Athletes – Clinical and Physiological Effects. Eur J Sport Sci., 2015, vol. 15, pp. 63–72. DOI: 10.1080/17461391.2014.971879
26. Rasenack N., Muller B.W. Preparation of Microcrystals by in Situ Micronization. Powder Technology. 2004, vol. 143–144, pp. 291–296. DOI: 10.1016/j.powtec.2004.04.021
27. Scalbert A., Williamson G. Dietary Intake and Bioavailability of Polyphenols. Journal of Nutrition. 2000, vol. 130 (8), pp. 2073–2085. DOI: 10.1093/jn/130.8.2073S
28. Lee C.W., Park N.H., Kim J.W. et al. Study of Skin Anti-Ageing and Anti-Inflammatory Effects of Dihydroquercetin, Natural Triterpenoids, and Their Synthetic Derivatives. Bioorg. Khim., 2012, vol. 38, pp. 374–381.
29. Zhang Z.R., Zaharna A., Wong M. et al. Taxifolin Enhances Andrographolide-Induced Mitotic Arrest and Apoptosis in Human Prostate Cancer Cells via Spindle Assembly Checkpoint Activation. PLoS, 2013, vol. 8, p. 54577.
30. Azmir J., Zaidul I.S.M., Rahman M.M. et al. Techniques for Extraction of Bioactive Compounds From Plant Materials: a Review. Journal of Food Engineering, 2013, vol. 117, pp. 426–436. DOI: 10.1016/j.jfoodeng.2013.01.014
31. Marchesi J.R., Adams D.H., Fava F. et al. The Gut Microbiota and Host Health: a New Clinical Frontier. Gut., 2016, vol. 65, pp. 330–339. DOI: 10.1136/gutjnl-2015-309990
32. Weidmann A.E. Dihydroquercetin: More Than Just an Impurity? Eur. J. Pharmacol., 2012, vol. 684, pp. 19–26. DOI: 10.1016/j.ejphar.2012.03.035
33. Ley R., Lozupone C.A., Hamady M. et al. Worlds Within Worlds: Evolutionof the Vertebrate Gut Microbiota. Nat. Rev. Microbiol., 2008, vol. 6, pp. 776–788. DOI: 10.1038/nrmicro1978

References on translit

1. Zavorokhina N.V., Solov’yeva M.P., Chugunova O.V., Pastushkova E.V., Fozilova V.V. [Vegetable Raw Materials of the Urals Region for the Production of Soft Drinks]. Pivo i napitki [Beer and Drinks], 2013, no. 4, pp. 28–31. (in Russ.)
2. Korul’kin D.Yu., Abilov Zh.A., Muzychkina R.A., Tolstikov G.A. Prirodnyye flavonoidy [Natural Flavonoids]. Novosibirsk, Theo Publ., 2007. 232 p.
3. Kalinina I.V., Potoroko I.Yu., Fatkullin R.I. [Results of the Effect of Ultrasonic Cavitation Effects on the Degree of Extraction of Biologically Active Substances From Plant Material]. Agrarnyy vestnik Urala [Agricultural Agrarian of the Urals], 2017, no. 10 (164), pp. 30–35. (in Russ.)
4. Cherno N.K., Lomaka E.V. [Stabilization of Betanine by Complexation with Arabinogalactan]. Izvestiya vuzov. Pishchevaya tekhnologiya [Izvestiya Vuzov. Food technology], 2013, no. 4, pp. 32–35. (in Russ.)
5. Chugunova O.V., Zavorokhina N.V. Ispol’zovaniye metodov degustatsionnogo analiza pri modelirovanii retseptur pishchevykh produktov s zadannymi potrebitel’skimi svoystvami: monografiya [Use of Methods of Tasting Analysis in the Modeling of Food Formulas with Specified
Consumer Properties. Monograph]. Ekaterinburg, Urals State University of Economics Publ., 2010. 148 p.
6. Shatilov A.V., Bogdanova O.G., Korobov A.V. [The Role of Antioxidants in the Body in Normal and Pathological Conditions]. Veterinarnaya patologiya [Veterinary Pathology], 2007, no. 2, pp. 207–211. (in Russ.)
7. Abad-Garcia B., Garmon-Lobato S., Berrueta L.A. Afragmentation Study of Dihydroquercetin Using Triple Quadrupole Mass Spectrometry and Its Application for Identification of Dihydroflavonols in Citrus Juices. Rapid Commun. Mass Spectrom., 2009, vol. 23, pp. 2785–2792. DOI: 10.1002/rcm.4182
8. Rogovskii V.S., Matiushin A.I., Shimanovskii N.L. et al. Antiproliferative and Antioxidant Activity of New Dihydroquercetin Derivatives. Eksp. Klin. Farmakol., 2010, vol. 73, pp. 39–42.
9. Fatkullin R., Popova N., Kalinina I. et al. Application of Ultrasonic Waves for the Improvement of Particle Dispersion in Drinks. Agronomy Research., 2017, vol. 15, pp. 1295–1303.
10. Krasulya O., Shestakov S., Bogush V. et al. Applications of Sonochemistry in Russian Food Processing Industry. Ultrasonics Sonochemistry, 2014, vol. 21, pp. 2112–2116. DOI: 10.1016/j.ultsonch.2014.03.015
11. Beckman K.B., Ames B.N. Endogenous Oxidative Damage of mtDNA. Mutation Research. Fundamental and Molecular Mechanisms of Mutagenesis, 1999, vol. 424, pp. 51–58. DOI: 10.1016/S0027-5107(99)00007-X
12. Czarniecka-Skubina E. Effect of Culinary Process on Beet Roots Quality. Electronic Journal of Polish Agricultural Universities, 2003, vol. 6.
13. Liang L., Gao C., Luo M. et al. Dihydroquercetin (DHQ) Induced HO-1 and NQO1 Expression Against Oxidative Stress Through the Nrf2-Dependent Antioxidant Pathway. J. Agric. Food Chem., 2013, vol. 61, pp. 2755–2761. DOI: 10.1021/jf304768p
14. Teselkin Y.O., Babenkova I., Kolhir V. et al. Dihydroquercetin as a Means of Antioxidative Defence in Rats with Tetrachloromethane Hepatitis. Phytother. Res., 2000, vol. 14, pp. 160–162. DOI: 10.1002/(SICI)1099-1573(200005)14:3<160::AID-PTR555>3.0.CO;2-Y
15. Hsu Y.J., Chiu C.C., Li Y.P. et al. Effect of Intestinal Microbiota on Exercise Performance in Mice. J Strength Cond Res., 2015, vol. 29, pp. 552–558. DOI: 10.1519/JSC.0000000000000644
16. Zu Y., Wu W., Zhao X. et al. Enhancement of Solubility, Antioxidant Ability and Bioavailability of Taxifolin Nanoparticles by Liquid Antisolvent Precipitation Technique. International Journal of Pharmaceutics, 2014, vol. 471, pp. 366–376. DOI: 10.1016/j.ijpharm.2014.05.049
17. O'Sullivan O., Cronin O., Clarke S.F. et al. Exercise and the Microbiota. Gut Microbes, 2015, vol. 6, pp. 131–136. DOI: 10.1080/19490976.2015.1011875
18. Lambert J.E., Myslicki J.P., Bomhof M.R. et al. Exercise Training Modifies Gut Microbiota in Normal and Diabetic Mice. Appl Physiol Nutr Metab., 2015, vol. 40, pp. 749–752. DOI: 10.1139/apnm-2014-0452
19. Ashokkumar M., Lee J., Zisu B. et al. Hot Topic: Sonication Increases the Heat Stability of Whey Proteins. Journal of Dairy Science, 2009, vol. 92, pp. 5353–5356. DOI: 10.3168/jds.2009-2561
20. Hyland N., Stanton C. The Gut-Brain Axis. Dietary, Probiotic, and Prebiotic Interventions on the Microbiota. Academic Press., 2016. 508 p.
21. Zu S., Yang L., Huang J. et al. Micronization of Taxifolin by Supercritical Antisolvent Process and Evaluation of Radical Scavenging Activity. Int. J. Mol. Sci., 2012, vol. 13, pp. 8869–8881. DOI: 10.3390/ijms13078869
22. Mittler R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends in Plant Science, 2002, vol. 7 (9), pp. 405–410. DOI: 10.1016/S1360-1385(02)02312-9
23. Nemzer B. Betalainic and Nutritional Profiles of Pigment-Enriched Red Beet Root (Beta vulgaris L.) Dried Extracts. Food Chemistry, 2011, vol. 127, pp. 42–53. DOI: 10.1016/j.foodchem.2010.12.081
24. Oral Microbiota Levels May Indicate Pancreatic Cancer Presented at: 2014 Meeting of the American Society for Microbiology; May 17–20; Boston.
25. Pyne D.B., West N.P., Cox A.J. Cripps Probiotics Supplementation for Athletes – Clinical and Physiological Effects. Eur J Sport Sci., 2015, vol. 15, pp. 63–72. DOI: 10.1080/17461391.2014.971879
26. Rasenack N., Muller B.W. Preparation of Microcrystals by in Situ Micronization. Powder Technology. 2004, vol. 143–144, pp. 291–296. DOI: 10.1016/j.powtec.2004.04.021
27. Scalbert A., Williamson G. Dietary Intake and Bioavailability of Polyphenols. Journal of Nutrition. 2000, vol. 130 (8), pp. 2073–2085. DOI: 10.1093/jn/130.8.2073S
28. Lee C.W., Park N.H., Kim J.W. et al. Study of Skin Anti-Ageing and Anti-Inflammatory Effects of Dihydroquercetin, Natural Triterpenoids, and Their Synthetic Derivatives. Bioorg. Khim., 2012, vol. 38, pp. 374–381.
29. Zhang Z.R., Zaharna A., Wong M. et al. Taxifolin Enhances Andrographolide-Induced Mitotic Arrest and Apoptosis in Human Prostate Cancer Cells via Spindle Assembly Checkpoint Activation. PLoS, 2013, vol. 8, p. 54577.
30. Azmir J., Zaidul I.S.M., Rahman M.M. et al. Techniques for Extraction of Bioactive Compounds From Plant Materials: a Review. Journal of Food Engineering, 2013, vol. 117, pp. 426–436. DOI: 10.1016/j.jfoodeng.2013.01.014
31. Marchesi J.R., Adams D.H., Fava F. et al. The Gut Microbiota and Host Health: a New Clinical Frontier. Gut., 2016, vol. 65, pp. 330–339. DOI: 10.1136/gutjnl-2015-309990
32. Weidmann A.E. Dihydroquercetin: More Than Just an Impurity? Eur. J. Pharmacol., 2012, vol. 684, pp. 19–26. DOI: 10.1016/j.ejphar.2012.03.035
33. Ley R., Lozupone C.A., Hamady M. et al. Worlds Within Worlds: Evolutionof the Vertebrate Gut Microbiota. Nat. Rev. Microbiol., 2008, vol. 6, pp. 776–788. DOI: 10.1038/nrmicro1978
Published
2018-06-01
How to Cite
Potoroko, I., Berebin, M., Kalinina, I., Ivanova, D., & Kiselova-Kaneva, Y. (2018). PLANT ADAPTOGENS IN SPECIALIZED FOOD PRODUCTS AS A FACTOR OF HOMEOSTATIC REGULATION INVOLVING MICROBIOTA. Human. Sport. Medicine, 18(2), 97-108. https://doi.org/10.14529/hsm180209
Section
Sports nutrition