SONOCHEMICAL MICRONIZATION OF TAXIFOLIN AIMED AT IMPROVING ITS BIOAVAILABILITY IN DRINKS FOR ATHLETES

Keywords: Taxifolin, sonochemical micronization, solubility, drinks for athletes

Abstract

Aim. The aim of this study is to overcome the problem of nutrient bioavailability in drinks for athletes, which is the result of their low permeability in metabolic processes of the body. For this purpose, we used sonochemical micronization of taxifolin – the most effective antioxidant. Materials and methods. To improve taxifolin solubility and bioavailability we used ultrasound treatment, which allowed us to provide taxifolin micronization on the following conditions: 5-, 15- and 25-minute treatment of 20 ± 2 kHz with radiation intensity of at least 10 W/cm2, power of 170, 400 and 630 W and temperature within 50 °С. The study was conducted using the following methods: microstructural analysis of native taxifolin and its solutions, including those obtained with sonochemical micronization; analysis of the disperse composition of taxifolin solutions; assessment of the total antioxidant activity of these solutions; assessment of taxifolin solubility and colloidal stability of its solutions. Results. We established that sonochemical micronization allows us to obtain solutions with the predominance of particles of no more than 100 nm. The morphological structure of taxifolin particles has significantly changed, particles are characterized by more homogenous and amorphous structure. We noticed some decrease in antioxidant activity under increased ultrasound exposure. Optimization of ultrasound exposure with the controlling parameter “average particle size” allowed us to establish the most effective mode (600 W, 18 minutes), which helped us to improve the colloidal stability of taxifolin solution and taxifolin solubility 6 times in comparison with the control sample. Conclusion. Sonochemical micronization should be regarded as convenient for the development of a new form of taxifolin with increased solubility and bioavailability, which can be used for the production of drinks for athletes.

References

1. Abad-Garcia B., Garmon-Lobato S., Berrueta L.A. Afragmentation Study of Dihydroquercetin Using Triple Quadrupole Mass Spectrometry and Its Application for Identification of Dihydroflavonols in Citrus Juices. Rapid Commun. Mass Spectrom., 2009, vol. 23, pp. 2785–2792. DOI: 10.1002/rcm.4182
2. Alexander N., Shikova O., Pozharitskaya N. et al. Nanodispersions of Taxifolin: Impact of Solid-State Properties on Dissolution Behavior. International Journal of Pharmaceutics, 2009, vol. 377, pp. 148–152. DOI: 10.1016/j.ijpharm.2009.04.044
3. Beckman K.B., Ames B.N. Endogenous Oxidative Damage of mtDNA. Mutation Research. Fundamental and Molecular Mechanisms of Mutagenesis, 1999, vol. 424, pp. 51–58. DOI: 10.1016/S0027-5107(99)00007-X
4. Fatkullin R., Popova N., Kalinina I. et al. Application of Ultrasound Waves for the Improvement of Particle Dispersion in Drinks. Agronomy Research, 2017, vol. 15, pp. 1295–1303.
5. Gao L., Liu G., Wang X. et al. Preparation of a Chemically Stable Quercetin Formulation Using Nanosuspension Technology. International Journal of Pharmaceutics, 2011, vol. 404, pp. 231–237. DOI: 10.1016/j.ijpharm.2010.11.009
6. Krasulya O., Bogush V., Trishina V., Potoroko I. et al. Impact of Acoustic Cavitation on Food Emulsions. Ultrasounds Sonochemistry, 2016, vol. 30, pp. 98–102. DOI: 10.1016/j.ultsonch.2015.11.013
7. Krasulya O., Shestakov S., Bogush V. et al. Applications of Sonochemistry in Russian Food Processing Industry. Ultrasounds Sonochemistry, 2014, vol. 21, pp. 2112–2116. DOI:10.1016/j.ultsonch.2014.03.015
8. Lee C.W., Park N.H., Kim J.W. et al. Study of Skin Anti-Ageing and Anti-Inflammatory Effects of Dihydroquercetin, Natural Triterpenoids, and Their Synthetic Derivatives. Bioorg. Khim., 2012, vol. 38, pp. 374–381.
9. Ley R., Lozupone C.A., Hamady M. et al. Worlds Within Worlds: Evolutionof the Vertebrate Gut Microbiota. Nat. Rev. Microbiol., 2008, vol. 6, pp. 776–788. DOI: 10.1038/nrmicro1978
10. Liang L., Gao C., Luo M. et al. Dihydroquercetin (DHQ) Induced HO-1 and NQO1 Expression Against Oxidative Stress Through the Nrf2-Dependent Antioxidant Pathway. J. Agric. Food Chem., 2013, vol. 61, pp. 2755–2761. DOI:10.1021/jf304768p
11. Mittler R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends in Plant Science, 2002, vol. 7 (9), pp. 405–410. DOI: 10.1016/S1360-1385(02)02312-9
12. Naumenko N.V., Kalinina I.V. Sonochemistry Effects Influence on the Adjustments of Raw Materials and Finished Goods Properties in Food Production. International Conference on Industrial Engineering, 19–20 May 2016, Chelyabinsk, pp. 691–696. DOI: 10.4028/www.scientific.net/MSF.870.691
13. Pyne D.B., West N.P., Cox A.J. Cripps Probiotics Supplementation for Athletes – Clinical and Physiological Effects. Eur J Sport Sci., 2015, vol. 15, pp. 63–72. DOI: 10.1080/17461391.2014.971879
14. Rasenack N., Muller B.W. Preparation of Microcrystals by in Situ Micronization. Powder Technology, 2004, vol. 143–144, pp. 291–296. DOI: 10.1016/j.powtec.2004.04.021
15. Rogovskii V.S., Matiushin A.I., Shimanovskii N.L. et al. Antiproliferative and Antioxidant Activity of New Dihydroquercetin Derivatives. Eksp. Klin. Farmakol., 2010, vol. 73, pp. 39–42.
16. Scalbert A., Williamson G. Dietary Intake and Bioavailability of Polyphenols. Journal of Nutrition, 2000, vol. 130 (8), pp. 2073–2085. DOI: 10.1093/jn/130.8.2073S
17. Teselkin Y.O., Babenkova I., Kolhir V. et al. Dihydroquercetin as a Means of Antioxidative Defence in Rats with Tetrachloromethane Hepatitis. Phytother. Res., 2000, vol. 14, pp. 160–162. DOI: 10.1002/(SICI)1099-1573(200005)14:3<160::AID-PTR555>3.0.CO;2-Y
18. Wang Y., Wang C., Zhao J., Ding Y. et al. A Cost-Effective Method to Prepare Curcumin Nanosuspensions with Enhanced Oral Bioavailability. Journal of Colloid and Interface Science, 2017, vol. 485, pp. 91–98. DOI: 10.1016/j.jcis.2016.09.003
19. Weidmann A.E. Dihydroquercetin: More Than Just an Impurity? Eur. J. Pharmacol., 2012, vol. 684, pp. 19–26. DOI: 10.1016/j.ejphar.2012.03.035
20. Xia D., Quan P., Piao H. et al. Preparation of Stable Nitrendipine Nanosuspensions Using the Precipitation-Ultrasoundation Method for Enhancement of Dissolution and Oral Bioavailability. European Journal of Pharmaceutical Sciences, 2010, vol. 40, pp. 325–334. DOI: 10.1016/j.ejps.2010.04.006
21. Yanga L.-J., Chenb W., MabSh.-X. et al. Host-Guest System of Taxifolin and Native Cyclodextrin or Its Derivative: Preparation, Characterization, Inclusion Mode, and Solubilization. Carbohydrate Polymers, 2011, vol. 85, pp. 629–637.DOI: 10.1016/j.carbpol.2011.03.029
22. Zhang Z.R., Zaharna A., Wong M. et al. Taxifolin Enhances Andrographolide-Induced Mitotic Arrest and Apoptosis in Human Prostate Cancer Cells via Spindle Assembly Checkpoint Activation. PLoS, 2013, vol. 8, p. 54577. DOI: 10.1371/journal.pone.0054577
23. Zu S., Yang L., Huang J. et al. Micronization of Taxifolin by Supercritical Antisolvent Process and Evaluation of Radical Scavenging Activity. Int. J. Mol. Sci., 2012, vol. 13, pp. 8869–8881. DOI: 10.3390/ijms13078869
24. Zu Y., Wu W., Zhao X. et al. Enhancement of Solubility, Antioxidant Ability and Bioavailability of Taxifolin Nanoparticles by Liquid Antisolvent Precipitation Technique. International Journal of Pharmaceutics, 2014, vol. 471, pp. 366–376. DOI: 10.1016/j.ijpharm.2014.05.049

References on translit

1. Abad-Garcia B., Garmon-Lobato S., Berrueta L.A. Afragmentation Study of Dihydroquercetin Using Triple Quadrupole Mass Spectrometry and Its Application for Identification of Dihydroflavonols in Citrus Juices. Rapid Commun. Mass Spectrom., 2009, vol. 23, pp. 2785–2792. DOI: 10.1002/rcm.4182
2. Alexander N., Shikova O., Pozharitskaya N. et al. Nanodispersions of Taxifolin: Impact of Solid-State Properties on Dissolution Behavior. International Journal of Pharmaceutics, 2009, vol. 377, pp. 148–152. DOI: 10.1016/j.ijpharm.2009.04.044
3. Beckman K.B., Ames B.N. Endogenous Oxidative Damage of mtDNA. Mutation Research. Fundamental and Molecular Mechanisms of Mutagenesis, 1999, vol. 424, pp. 51–58. DOI: 10.1016/S0027-5107(99)00007-X
4. Fatkullin R., Popova N., Kalinina I. et al. Application of Ultrasound Waves for the Improvement of Particle Dispersion in Drinks. Agronomy Research, 2017, vol. 15, pp. 1295–1303.
5. Gao L., Liu G., Wang X. et al. Preparation of a Chemically Stable Quercetin Formulation Using Nanosuspension Technology. International Journal of Pharmaceutics, 2011, vol. 404, pp. 231–237. DOI: 10.1016/j.ijpharm.2010.11.009
6. Krasulya O., Bogush V., Trishina V., Potoroko I. et al. Impact of Acoustic Cavitation on Food Emulsions. Ultrasounds Sonochemistry, 2016, vol. 30, pp. 98–102. DOI: 10.1016/j.ultsonch.2015.11.013
7. Krasulya O., Shestakov S., Bogush V. et al. Applications of Sonochemistry in Russian Food Processing Industry. Ultrasounds Sonochemistry, 2014, vol. 21, pp. 2112–2116. DOI:10.1016/j.ultsonch.2014.03.015
8. Lee C.W., Park N.H., Kim J.W. et al. Study of Skin Anti-Ageing and Anti-Inflammatory Effects of Dihydroquercetin, Natural Triterpenoids, and Their Synthetic Derivatives. Bioorg. Khim., 2012, vol. 38, pp. 374–381.
9. Ley R., Lozupone C.A., Hamady M. et al. Worlds Within Worlds: Evolutionof the Vertebrate Gut Microbiota. Nat. Rev. Microbiol., 2008, vol. 6, pp. 776–788. DOI: 10.1038/nrmicro1978
10. Liang L., Gao C., Luo M. et al. Dihydroquercetin (DHQ) Induced HO-1 and NQO1 Expression Against Oxidative Stress Through the Nrf2-Dependent Antioxidant Pathway. J. Agric. Food Chem., 2013, vol. 61, pp. 2755–2761. DOI:10.1021/jf304768p
11. Mittler R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends in Plant Science, 2002, vol. 7 (9), pp. 405–410. DOI: 10.1016/S1360-1385(02)02312-9
12. Naumenko N.V., Kalinina I.V. Sonochemistry Effects Influence on the Adjustments of Raw Materials and Finished Goods Properties in Food Production. International Conference on Industrial Engineering, 19–20 May 2016, Chelyabinsk, pp. 691–696. DOI: 10.4028/www.scientific.net/MSF.870.691
13. Pyne D.B., West N.P., Cox A.J. Cripps Probiotics Supplementation for Athletes – Clinical and Physiological Effects. Eur J Sport Sci., 2015, vol. 15, pp. 63–72. DOI: 10.1080/17461391.2014.971879
14. Rasenack N., Muller B.W. Preparation of Microcrystals by in Situ Micronization. Powder Technology, 2004, vol. 143–144, pp. 291–296. DOI: 10.1016/j.powtec.2004.04.021
15. Rogovskii V.S., Matiushin A.I., Shimanovskii N.L. et al. Antiproliferative and Antioxidant Activity of New Dihydroquercetin Derivatives. Eksp. Klin. Farmakol., 2010, vol. 73, pp. 39–42.
16. Scalbert A., Williamson G. Dietary Intake and Bioavailability of Polyphenols. Journal of Nutrition, 2000, vol. 130 (8), pp. 2073–2085. DOI: 10.1093/jn/130.8.2073S
17. Teselkin Y.O., Babenkova I., Kolhir V. et al. Dihydroquercetin as a Means of Antioxidative Defence in Rats with Tetrachloromethane Hepatitis. Phytother. Res., 2000, vol. 14, pp. 160–162. DOI: 10.1002/(SICI)1099-1573(200005)14:3<160::AID-PTR555>3.0.CO;2-Y
18. Wang Y., Wang C., Zhao J., Ding Y. et al. A Cost-Effective Method to Prepare Curcumin Nanosuspensions with Enhanced Oral Bioavailability. Journal of Colloid and Interface Science, 2017, vol. 485, pp. 91–98. DOI: 10.1016/j.jcis.2016.09.003
19. Weidmann A.E. Dihydroquercetin: More Than Just an Impurity? Eur. J. Pharmacol., 2012, vol. 684, pp. 19–26. DOI: 10.1016/j.ejphar.2012.03.035
20. Xia D., Quan P., Piao H. et al. Preparation of Stable Nitrendipine Nanosuspensions Using the Precipitation-Ultrasoundation Method for Enhancement of Dissolution and Oral Bioavailability. European Journal of Pharmaceutical Sciences, 2010, vol. 40, pp. 325–334. DOI: 10.1016/j.ejps.2010.04.006
21. Yanga L.-J., Chenb W., MabSh.-X. et al. Host-Guest System of Taxifolin and Native Cyclodextrin or Its Derivative: Preparation, Characterization, Inclusion Mode, and Solubilization. Carbohydrate Polymers, 2011, vol. 85, pp. 629–637.DOI: 10.1016/j.carbpol.2011.03.029
22. Zhang Z.R., Zaharna A., Wong M. et al. Taxifolin Enhances Andrographolide-Induced Mitotic Arrest and Apoptosis in Human Prostate Cancer Cells via Spindle Assembly Checkpoint Activation. PLoS, 2013, vol. 8, p. 54577. DOI: 10.1371/journal.pone.0054577
23. Zu S., Yang L., Huang J. et al. Micronization of Taxifolin by Supercritical Antisolvent Process and Evaluation of Radical Scavenging Activity. Int. J. Mol. Sci., 2012, vol. 13, pp. 8869–8881. DOI: 10.3390/ijms13078869
24. Zu Y., Wu W., Zhao X. et al. Enhancement of Solubility, Antioxidant Ability and Bioavailability of Taxifolin Nanoparticles by Liquid Antisolvent Precipitation Technique. International Journal of Pharmaceutics, 2014, vol. 471, pp. 366–376. DOI: 10.1016/j.ijpharm.2014.05.049
Published
2018-09-01
How to Cite
Potoroko, I., Kalinina, I., Naumenko, N., Fatkullin, R., Nenasheva, A., Uskova, D., Sonawane, S., Ivanova, D., & Velyamov, M. (2018). SONOCHEMICAL MICRONIZATION OF TAXIFOLIN AIMED AT IMPROVING ITS BIOAVAILABILITY IN DRINKS FOR ATHLETES. Human. Sport. Medicine, 18(3), 90-100. https://doi.org/10.14529/hsm180309
Section
Sports nutrition

Most read articles by the same author(s)

1 2 > >>