POSSIBILITIES OF REGULATING ANTIOXIDANT ACTIVITY OF MEDICINAL PLANT EXTRACTS

Keywords: Medicinal plants, extraction, biologically active compounds, antioxidant activity, ultrasound

Abstract

The aim of the paper. The aim of the present paper is to evaluate the effectiveness of extracting biologically active substances of antioxidant action from plant raw materials on the basis of applying different extraction approaches. Materials and methods. We did the chemical research of BAS extracts Lonicera сaerulea L. and Urtica folia L. concerning their migration parameters during fraction division (honeysuckle berries) and changing extraction conditions (dried nettle leaves). Freeze-drying of raw material (by means of a freeze-drying apparatus “Ineye-6” under the following conditions: temperature –50 ± 5 °C, pressure no more than 6 Pa) was applied to preserve the bioactivity in a honeysuckle fraction. The experiment included a wide range of chemical parameters ? antioxidant activity (АОА), mass fraction of extractives, phenol compounds, anthocyanins and vitamins. The UFLC Shimadzu Corporation Pump: LC-20AD Detector: SPD-M20A Prominence Diode array detector was used to identify bioactive substances. Results and discussion. The paper studies the influence of various approaches concerning bioactive compounds extraction from Lonicera сaerulea L. and Urtica folia L. The application of ultrasound (US) with frequencies 22 ± 0.6 kHz increases the effectiveness of extraction process. It helps to conduct extraction at low temperatures (60 ± 2 °С) without using chemical reagents. The paper presents the results of water and ethanol extraction obtained from different fractions of honeysuckle and dried nettle leaves. It also provides the results of antioxidant activity analysis of this extraction and a total of antioxidant activity. Urtica folia L extracted by US of 120 W (2,4043 ± 0,084 mg/ml) and a sample based on the water-ethanol extraction agent without an ultrasonic bath (2,5209 ± 0,032 mg/ml) showed higher antioxidant activity. We defined the technological parameters of obtaining a dry extract of Lonicera сaerulea L by means of ultrasound and freeze-drying for preserving the maximum bioactive compounds of raw material (up to 92–85 %). Conclusion. The results of the experiment proved that ultrasound-assisted extraction improves the extraction kinetics and the output of bioactive compounds from the substrate. The extraction technology excludes the infusion stage which reduces energy intensity.

References

1. Afanas'ev I.B., Dorozhko A.I., Brodskii A.V., Kostyuk V.A., Potapovitch A.I. Chelating and Free Scavenging Mechanisms of Inhibitory Action of Rutin and Quercetin in lipid Peroxidation. ZBiochem. Pharmacol, 1989, vol. 38, pp. 1763–1769.
2. Amarowicz R., Troszynska A., Pegg R.B. Antioxidative and Radical Scavenging Effects of Phenolics from Vicia Sativum. Fitoterapia, 2008, vol. 79, pp. 121–122. DOI: 10.1016/j.fitote.2007.07.018
3. Andriy G. Development and Validation of a RP-HPLC Method for the Simultaneous Estimation of Luteolin and Apigenin in Herb of Achillea Millefolium. Pharma Innovation, 2013, no. 2, pp. 7–14. DOI: 10.1016/j.jtusci.2016.10.004
4. Ashokkumar M., Lee J., Zisu B., Bhaskarcharya R., Palmer M. & Kentish S. Hot Topic: Sonication Increases the Heat Stability of Whey Proteins. Journal of Dairy Science, 2009, no. 92, pp. 5353–5356. DOI: 10.3168/jds.2009-2561
5. Borisova M.S. Lechenie klyukvoy, brusnikoy, chernikoy [Treatment of Cranberries, Lingonberries, Blueberries]. St. Petersburg, Letters, 2003. 58 p.
6. Brown J.E., Khodr H., Hider R.C., Rice-Evans C.A.J. Structural Dependence of Flavonoid Interactions with Cu2+ Ions: Implications for their Antioxidant Properties. Biochem, 1998, vol. 330, pp. 1173–1178.
7. Dadali V.A. Makarov, V.G. Biologically Active Substances of Medicinal Plants as a Factor of Detoxification. The Supply Issues, 2003, no. 5, pp. 49–55.
8. Elim, H.-J., Chen F., Wang X., Chung H.Y., Jin Z. Evaluation of Antioxidant Activity of Vetiver (Vetiveria Zizanioides L.) Oil and Identification of its Antioxidant Constituents. J. Agric. Food Chemistry, 2005, vol. 53, pp. 7691–7695.
9. Fatkullin R., Popova N., Kalinina I., Botvinnikova V. Application of Ultrasonic Waves for the Improvement of Particle Dispersion in Drinks. Agronomy Research, 2017, no. 15, pp. 1295–1303.
10. Golovina, E.Yu., Branova T.A. [The Content of Antioxidants in Leaves of Some Legumes of the City of Kaliningrad]. Bioantioxidant: Abstracts of 8th International Conference. Moscow, 2010, pp. 58–59. (in Russ.)
11. Golub O.V., Chakrya G.P., Motovilov D.C. [Formation of the Quality Characteristics of Fermented Beverage Based on Honey and Plant Materials]. Beer and Drinks, 2015, no. 5, pp. 26–30. (in Russ.)
12. Materialy 6-y Mezhdunarodnoy konferentsii “Fitoterapiya, biologicheski aktivnye veshchestva estestvennogo proiskhozhdeniya v sovremennoy meditsine” [International Scientific Conference “Herbal Medicine, Biologically Active Substances of Natural Origin”], 2004, pp. 260–268. (in Russ.)
13. Katalinic V., Milos M., Kulisic T., Jukic M. Screening of 70 Medicinal Plant Extracts for Antioxidant Capacity and Total Phenols. Food Chemistry, 2006, vol. 94, pp. 550–557. DOI: 10.1016/j.foodchem.2004.12.004
14. Kiseleva T.F., Zaitsev S.I. [Identification of Prerequisites for Complex Processing of Fruit and Berry Raw Materials of the Siberian Region]. Technics and Technology of Food Production, 2009, no 3, pp. 7–11. (in Russ.)
15. Korulkin D.Yu., Abilov Zh.A., Muzychkina R.A., Tolstikov G.A. Prirodnye flavonoidy [Natural Flavonoid]. Novosibirsk, Theo, 2007. 232 p.
16. Krasulya O., Shestakov S., Bogush V., Potoroko I., Cherepanov P. and Krasulya B. Applications of Sonochemistry in Russian Food Processing Industry. Ultrasonics Sonochemistry, 2014, no. 21, pp. 2112–2116. DOI: 10.1016/j.ultsonch.2014.03.015
17. Masaki H., Sakaki S., Atsumi T., Sakurai H. Active-Oxygen Scavenging Activity of Plant Extracts. Biol. Pharm. Bul., 1995, vol. 18, pp. 162–166.
18. Melidou M. Riganakos K., Galaris D. Protection Against Nuclear DNA Damage Offered by Flavonoids in Cells Exposed to Hydrogen Peroxide: the Role of Iron Chelation. Free Radic. Biol. Med, 2005, vol. 39, pp. 1591–1600. DOI: 10.1016/j.freeradbiomed.2005.08.009
19. Naumenko N.V., Kalinina I.V. Sonochemistry Effects Influence on the Adjustments of Raw Materials and Finished Goods Properties in Food Production. Materials Science Forum, 2016, vol. 870, pp. 691–696.
20. Okubo T.N., Ishinara N., Oura A., Serit M., Kim M., Yamamoto T., Mitsuoka T. In Vivo Effects of Tea Polyphenol Intake on Human Intestinal Microflora and Metabolism. Biosci. Biotechnol. Biochem, 1992, vol. 56, pp. 588–591.
21. Pietta P.-G. Flavonoids as Antioxidants. J. Nat. Prod, 2000, vol. 63, pp. 1035–1042.
22. Potoroko I.Y., Kretova Y.I., Kalinina I.V. [Practical Aspects of the Use of Resource Efficient Technologies in Food Production as a Factor in the Quality of Finished Goods]. Goods manager of Food Products, 2014, no. 10, pp. 8–13. (in Russ.)
23. Rice-Evans C.A. Miller N.M., Paganda G. Structure Antioxidant Activity Relationships of Flavonoids and Phenolic Acids. Free Radic. Biol. Med, 1996, vol. 20, pp. 933–956. DOI: 10.1016/0891-5849(95)02227-9
24. Rice-Evans C.A., Miller N.J., Bolwell P.G., Bramley P.M., Pridham J.B. The Relative Antioxidant Activities of Plant-Derived Polyphenolic Flavonoids. Free Radic. Res, 1995, vol. 22, pp. 375–383.
25. Shanmuga Sundaram Rajagopal, Babitha K Vazhayil, Liz Varghese, Mahadevan Nanjaian Development, Validation of RP-HPLC Method for Simultaneous Determination of Apigenin and Luteolin in Ethanol Extract of Clerodendrum serratum (Linn.) Leaves. Asian Journal of Applied Sciences, 2017, no. 05 (01), pp. 52–60. DOI: 10.1016/j.jpha.2013.09.008
26. Shatilov A.V., Bogdanova O.G., Korobov A.V. [The role of Antioxidants in a Human Body: Norm and Pathology]. Veterinary Pathology, 2007, no. 2, pp. 207–211. (in Russ.)
27. Shcherbakov D.L., Emel’yanov V.V., [Meshchaninov V.N. The Influence of Adrenaline on Lipid Peroxidation in Myelokaryocytes of Adult and Old Rats in Vitro]. Vestnik uralskoy meditsinskoy akademicheskoy nauki, 2013, no. 4, pp. 102–105. (in Russ.)
28. Shcherbakov D.L., Emel’yanov V.V., Meshchaninov V.N. [Triptofan and Nicotinic Acid as Antioxidants in Different Age Rats Brain at the Immobilization Stress]. Uspekhi gerontologii, 2014, no. 27 (4), pp. 730–736. (in Russ.)
29. Shestakov S. et al. A New Look at Cavitation and the Applications of Its Liquid-Phase Effects in the Processing of Food and Fuel. Applied Physics Research, 2012, vol. 4, pp. 19–29.
30. Shestakov S. Babak V. Mathematical Model of the Spatial Distributing of Density of Erosive Power of Multibubble Cavitation. Applied Physics Research, 2012, no. 4, pp. 64–77.
31. Silva M.M., Santos M.R., Caroco G., Rocha R., Justino G., Mira L. Structure-Antioxidant Activity Relationships of Flavonoids: a Reexamination. Free Radic. Res, 2002, vol. 36, pp. 1219–1227.
32. Skerget, M., Z. Knez, M. Habulin, Solubility of ?-carotene and Oleic Acid in Supercritical Carbon Dioxide and Data Correlation by a Density Based Model. Fluid Phase Equil, 1995, no. 109, pp. 131–138. DOI: 10.1016/0378-3812(95)02717-S
33. Spencer J.P.E., Chowrimootoo G., Choudhury R., Debnam E.S., Srai S.K., Rice-Evans C. The Small Intestine Can Both Absorb and Glucuronidate Luminal Flavonoids. FEBS Lett, 1999, vol. 458, pp. 224–230.
34. Spencer, J.P.E. Mohsen M.M.A.E., Rice-Evans C. Cellular Uptake and Metabolism of Flavonoids and Their Metabolites: Implications for Their Bioactivity. Arch. Biochem. Biophys, 2004, vol. 423, pp. 148–161.
35. Tian-yang Wang, Qing Li, Kai-shun Bi. Bioactive Flavonoids in Medicinal Plants: Structure, Activity and Biological Fate. Asian Journal of Pharmaceutical Sciences. Available online 15 August 2017. DOI: 10.1016/j.ajps.2017.08.004
36. Usov A.I., Smirnova G.P., Klochkova N.G. [Polysaccharide Composition of Certain Brown Algae of Kamchatka]. Bioorgan. khimiya [Bioorganic Chemistry], 2001, vol. 27, no. 6, pp. 444–448. (in Russ.)
37. Vitaly Roginsky. Chain-Breaking Antioxidant Activity of Natural Polyphenols as Determined During the Chain Oxidation of Methyl Linoleate in Triton X-100 Micelles. Archives
of Biochemistry and Biophysics, 2003, no. 15, pp. 261–270. DOI: 10.1016/S0003-9861(03)00143-7
38. Vostаlovа J., Galandаkovа A., Palikova I., Ulrichova J., Dolezal D., Lichnovska R., Vrbkova J., Rajnochovа A.S. Lonicera Caerulea Fruits Reduce UVA-Induced Damage in Hairless Mice. Journal of Photochemistry and Photobiology B: Biology, 2013, no. 5, pp. 1–11. DOI: 10.1016/j.jphotobiol.2013.07.024
39. Wu L.-C., Hsu H.-W., Chen Y.-C., Chin C.-C., Lin Y.-I., Ho J.A. Antioxidant and Antiproliferative Activities of Red Pitaya. Food Chem, 2006, vol. 95. pp. 319–327.
40. Wu, Jia-Jiuan, Jung-Chuan Lin, Chih-Hung Wang et al. Extraction of Antioxidative Compounds from Wine Lees Using Supercritical Fluids and Associated Anti-Tyrosinase Activity.
JSF, 2009, no. 50, pp. 33–41.
41. Xiao, Q.C., Jian, B.X. RP-HPLC-DAD Determination of Flavonoids: Separation of Quercetin, Apigenin and Luteolin in Marchantia Convolute. Iranian Journal of Pharmaceutical Research, 2009, no. 54, 175–181. DOI: 10.1016/j.indcrop.2012.04.043
42. Zavorohina N.V. [Simulation of Drinks Directed Social Activity Taking Into Account Specifics of the Region]. Beer and Drinks, 2013, no. 6, pp. 8–12. (in Russ.)
43. Zavorohina, N.V., Chugunova O.V., Fozilova V.V. [Tea Drinks Antioxidant Orientation on the Basis of Epilobium Angustifolium]. Beer and Drinks, 2013, no. 1, pp. 28–31. (in Russ.)
44. Zheng M., Wang X., Templeton L.J., Smulski D.R., LaRossa R.A., Storz G. DNA Microarray-Mediated Transcriptional Profiling of the Escherichia Coli Response to Hydrogen Peroxide. Journal of Bacteriology, 2001, vol. 183, pp. 4562–4570. DOI: 10.1128/JB.183.15.4562-4570.2001

References on translit

1. Afanas'ev I.B., Dorozhko A.I., Brodskii A.V., Kostyuk V.A., Potapovitch A.I. Chelating and Free Scavenging Mechanisms of Inhibitory Action of Rutin and Quercetin in lipid Peroxidation. ZBiochem. Pharmacol, 1989, vol. 38, pp. 1763–1769.
2. Amarowicz R., Troszynska A., Pegg R.B. Antioxidative and Radical Scavenging Effects of Phenolics from Vicia Sativum. Fitoterapia, 2008, vol. 79, pp. 121–122. DOI: 10.1016/j.fitote.2007.07.018
3. Andriy G. Development and Validation of a RP-HPLC Method for the Simultaneous Estimation of Luteolin and Apigenin in Herb of Achillea Millefolium. Pharma Innovation, 2013, no. 2, pp. 7–14. DOI: 10.1016/j.jtusci.2016.10.004
4. Ashokkumar M., Lee J., Zisu B., Bhaskarcharya R., Palmer M. & Kentish S. Hot Topic: Sonication Increases the Heat Stability of Whey Proteins. Journal of Dairy Science, 2009, no. 92, pp. 5353–5356. DOI: 10.3168/jds.2009-2561
5. Borisova M.S. Lechenie klyukvoy, brusnikoy, chernikoy [Treatment of Cranberries, Lingonberries, Blueberries]. St. Petersburg, Letters, 2003. 58 p.
6. Brown J.E., Khodr H., Hider R.C., Rice-Evans C.A.J. Structural Dependence of Flavonoid Interactions with Cu2+ Ions: Implications for their Antioxidant Properties. Biochem, 1998, vol. 330, pp. 1173–1178.
7. Dadali V.A. Makarov, V.G. Biologically Active Substances of Medicinal Plants as a Factor of Detoxification. The Supply Issues, 2003, no. 5, pp. 49–55.
8. Elim, H.-J., Chen F., Wang X., Chung H.Y., Jin Z. Evaluation of Antioxidant Activity of Vetiver (Vetiveria Zizanioides L.) Oil and Identification of its Antioxidant Constituents. J. Agric. Food Chemistry, 2005, vol. 53, pp. 7691–7695.
9. Fatkullin R., Popova N., Kalinina I., Botvinnikova V. Application of Ultrasonic Waves for the Improvement of Particle Dispersion in Drinks. Agronomy Research, 2017, no. 15, pp. 1295–1303.
10. Golovina, E.Yu., Branova T.A. [The Content of Antioxidants in Leaves of Some Legumes of the City of Kaliningrad]. Bioantioxidant: Abstracts of 8th International Conference. Moscow, 2010, pp. 58–59. (in Russ.)
11. Golub O.V., Chakrya G.P., Motovilov D.C. [Formation of the Quality Characteristics of Fermented Beverage Based on Honey and Plant Materials]. Beer and Drinks, 2015, no. 5, pp. 26–30. (in Russ.)
12. Materialy 6-y Mezhdunarodnoy konferentsii “Fitoterapiya, biologicheski aktivnye veshchestva estestvennogo proiskhozhdeniya v sovremennoy meditsine” [International Scientific Conference “Herbal Medicine, Biologically Active Substances of Natural Origin”], 2004, pp. 260–268. (in Russ.)
13. Katalinic V., Milos M., Kulisic T., Jukic M. Screening of 70 Medicinal Plant Extracts for Antioxidant Capacity and Total Phenols. Food Chemistry, 2006, vol. 94, pp. 550–557. DOI: 10.1016/j.foodchem.2004.12.004
14. Kiseleva T.F., Zaitsev S.I. [Identification of Prerequisites for Complex Processing of Fruit and Berry Raw Materials of the Siberian Region]. Technics and Technology of Food Production, 2009, no 3, pp. 7–11. (in Russ.)
15. Korulkin D.Yu., Abilov Zh.A., Muzychkina R.A., Tolstikov G.A. Prirodnye flavonoidy [Natural Flavonoid]. Novosibirsk, Theo, 2007. 232 p.
16. Krasulya O., Shestakov S., Bogush V., Potoroko I., Cherepanov P. and Krasulya B. Applications of Sonochemistry in Russian Food Processing Industry. Ultrasonics Sonochemistry, 2014, no. 21, pp. 2112–2116. DOI: 10.1016/j.ultsonch.2014.03.015
17. Masaki H., Sakaki S., Atsumi T., Sakurai H. Active-Oxygen Scavenging Activity of Plant Extracts. Biol. Pharm. Bul., 1995, vol. 18, pp. 162–166.
18. Melidou M. Riganakos K., Galaris D. Protection Against Nuclear DNA Damage Offered by Flavonoids in Cells Exposed to Hydrogen Peroxide: the Role of Iron Chelation. Free Radic. Biol. Med, 2005, vol. 39, pp. 1591–1600. DOI: 10.1016/j.freeradbiomed.2005.08.009
19. Naumenko N.V., Kalinina I.V. Sonochemistry Effects Influence on the Adjustments of Raw Materials and Finished Goods Properties in Food Production. Materials Science Forum, 2016, vol. 870, pp. 691–696.
20. Okubo T.N., Ishinara N., Oura A., Serit M., Kim M., Yamamoto T., Mitsuoka T. In Vivo Effects of Tea Polyphenol Intake on Human Intestinal Microflora and Metabolism. Biosci. Biotechnol. Biochem, 1992, vol. 56, pp. 588–591.
21. Pietta P.-G. Flavonoids as Antioxidants. J. Nat. Prod, 2000, vol. 63, pp. 1035–1042.
22. Potoroko I.Y., Kretova Y.I., Kalinina I.V. [Practical Aspects of the Use of Resource Efficient Technologies in Food Production as a Factor in the Quality of Finished Goods]. Goods manager of Food Products, 2014, no. 10, pp. 8–13. (in Russ.)
23. Rice-Evans C.A. Miller N.M., Paganda G. Structure Antioxidant Activity Relationships of Flavonoids and Phenolic Acids. Free Radic. Biol. Med, 1996, vol. 20, pp. 933–956. DOI: 10.1016/0891-5849(95)02227-9
24. Rice-Evans C.A., Miller N.J., Bolwell P.G., Bramley P.M., Pridham J.B. The Relative Antioxidant Activities of Plant-Derived Polyphenolic Flavonoids. Free Radic. Res, 1995, vol. 22, pp. 375–383.
25. Shanmuga Sundaram Rajagopal, Babitha K Vazhayil, Liz Varghese, Mahadevan Nanjaian Development, Validation of RP-HPLC Method for Simultaneous Determination of Apigenin and Luteolin in Ethanol Extract of Clerodendrum serratum (Linn.) Leaves. Asian Journal of Applied Sciences, 2017, no. 05 (01), pp. 52–60. DOI: 10.1016/j.jpha.2013.09.008
26. Shatilov A.V., Bogdanova O.G., Korobov A.V. [The role of Antioxidants in a Human Body: Norm and Pathology]. Veterinary Pathology, 2007, no. 2, pp. 207–211. (in Russ.)
27. Shcherbakov D.L., Emel’yanov V.V., [Meshchaninov V.N. The Influence of Adrenaline on Lipid Peroxidation in Myelokaryocytes of Adult and Old Rats in Vitro]. Vestnik uralskoy meditsinskoy akademicheskoy nauki, 2013, no. 4, pp. 102–105. (in Russ.)
28. Shcherbakov D.L., Emel’yanov V.V., Meshchaninov V.N. [Triptofan and Nicotinic Acid as Antioxidants in Different Age Rats Brain at the Immobilization Stress]. Uspekhi gerontologii, 2014, no. 27 (4), pp. 730–736. (in Russ.)
29. Shestakov S. et al. A New Look at Cavitation and the Applications of Its Liquid-Phase Effects in the Processing of Food and Fuel. Applied Physics Research, 2012, vol. 4, pp. 19–29.
30. Shestakov S. Babak V. Mathematical Model of the Spatial Distributing of Density of Erosive Power of Multibubble Cavitation. Applied Physics Research, 2012, no. 4, pp. 64–77.
31. Silva M.M., Santos M.R., Caroco G., Rocha R., Justino G., Mira L. Structure-Antioxidant Activity Relationships of Flavonoids: a Reexamination. Free Radic. Res, 2002, vol. 36, pp. 1219–1227.
32. Skerget, M., Z. Knez, M. Habulin, Solubility of ?-carotene and Oleic Acid in Supercritical Carbon Dioxide and Data Correlation by a Density Based Model. Fluid Phase Equil, 1995, no. 109, pp. 131–138. DOI: 10.1016/0378-3812(95)02717-S
33. Spencer J.P.E., Chowrimootoo G., Choudhury R., Debnam E.S., Srai S.K., Rice-Evans C. The Small Intestine Can Both Absorb and Glucuronidate Luminal Flavonoids. FEBS Lett, 1999, vol. 458, pp. 224–230.
34. Spencer, J.P.E. Mohsen M.M.A.E., Rice-Evans C. Cellular Uptake and Metabolism of Flavonoids and Their Metabolites: Implications for Their Bioactivity. Arch. Biochem. Biophys, 2004, vol. 423, pp. 148–161.
35. Tian-yang Wang, Qing Li, Kai-shun Bi. Bioactive Flavonoids in Medicinal Plants: Structure, Activity and Biological Fate. Asian Journal of Pharmaceutical Sciences. Available online 15 August 2017. DOI: 10.1016/j.ajps.2017.08.004
36. Usov A.I., Smirnova G.P., Klochkova N.G. [Polysaccharide Composition of Certain Brown Algae of Kamchatka]. Bioorgan. khimiya [Bioorganic Chemistry], 2001, vol. 27, no. 6, pp. 444–448. (in Russ.)
37. Vitaly Roginsky. Chain-Breaking Antioxidant Activity of Natural Polyphenols as Determined During the Chain Oxidation of Methyl Linoleate in Triton X-100 Micelles. Archives
of Biochemistry and Biophysics, 2003, no. 15, pp. 261–270. DOI: 10.1016/S0003-9861(03)00143-7
38. Vostаlovа J., Galandаkovа A., Palikova I., Ulrichova J., Dolezal D., Lichnovska R., Vrbkova J., Rajnochovа A.S. Lonicera Caerulea Fruits Reduce UVA-Induced Damage in Hairless Mice. Journal of Photochemistry and Photobiology B: Biology, 2013, no. 5, pp. 1–11. DOI: 10.1016/j.jphotobiol.2013.07.024
39. Wu L.-C., Hsu H.-W., Chen Y.-C., Chin C.-C., Lin Y.-I., Ho J.A. Antioxidant and Antiproliferative Activities of Red Pitaya. Food Chem, 2006, vol. 95. pp. 319–327.
40. Wu, Jia-Jiuan, Jung-Chuan Lin, Chih-Hung Wang et al. Extraction of Antioxidative Compounds from Wine Lees Using Supercritical Fluids and Associated Anti-Tyrosinase Activity.
JSF, 2009, no. 50, pp. 33–41.
41. Xiao, Q.C., Jian, B.X. RP-HPLC-DAD Determination of Flavonoids: Separation of Quercetin, Apigenin and Luteolin in Marchantia Convolute. Iranian Journal of Pharmaceutical Research, 2009, no. 54, 175–181. DOI: 10.1016/j.indcrop.2012.04.043
42. Zavorohina N.V. [Simulation of Drinks Directed Social Activity Taking Into Account Specifics of the Region]. Beer and Drinks, 2013, no. 6, pp. 8–12. (in Russ.)
43. Zavorohina, N.V., Chugunova O.V., Fozilova V.V. [Tea Drinks Antioxidant Orientation on the Basis of Epilobium Angustifolium]. Beer and Drinks, 2013, no. 1, pp. 28–31. (in Russ.)
44. Zheng M., Wang X., Templeton L.J., Smulski D.R., LaRossa R.A., Storz G. DNA Microarray-Mediated Transcriptional Profiling of the Escherichia Coli Response to Hydrogen Peroxide. Journal of Bacteriology, 2001, vol. 183, pp. 4562–4570. DOI: 10.1128/JB.183.15.4562-4570.2001
Published
2017-12-01
How to Cite
Potoroko, I., Kalinina, I., Naumenko, N., Fatkullin, R., Shaik, S., Sonawane, S., Ivanova, D., Kiselova-Kaneva, Y., Tolstykh, O., & Paymulina, A. (2017). POSSIBILITIES OF REGULATING ANTIOXIDANT ACTIVITY OF MEDICINAL PLANT EXTRACTS. Human. Sport. Medicine, 17(4), 77-90. https://doi.org/10.14529/hsm170409
Section
Sports nutrition