“MOVEMENT-MIRRORING” ARM EXOSKELETON IN REHABILITATION

Keywords: Exoskeleton, movement, rehabilitation

Abstract

Aim. The aim of this article is to develop the prototype of arm exoskeleton for the treatment of upper limb movement activity after intracerebral hemorrhage or heart attack. Materials and methods. “Movement-mirroring” function was introduced with the help of the manipulating device consisting of the device for wireless data transfer, Arduino controller, exoskeleton servomotors, 3 accelerometers GY-85 and software, which detects angles. Results. We developed the prototype of the rehabilitation device, which was tested by 6 volunteers. Arduino controller allowed us to reduce the time needed for servomotor response up to 400 msec. Conclusion. If only one arm is affected as a result of hemiparesis or hemiplegia, then the rehabilitation therapy can be conducted in accordance with the program stated or by copying the movements of a healthy limb by means of ‘movement-mirroring’ function.

References

1. Ball S.J, Brown I., Scott S. Medarm: A Rehabilitation Robot with 5dof at the Shoulder Complex. Zurich: IEEE, 1–6, 2007.
2. Beer R.F., Dewald J.P., Dawson M.L., Rymer W.Z. Target-Dependent Differences Between Free and Constrained Arm Movements in Chronic Hemiparesis. Exp. Brain Res, 2004, vol. 156, pp. 458–470. DOI: 10.1007/s00221-003-1807-8
3. Bernstein N. The Coordination and Regulation of Movement. London: Pergamon Press, 1967, 196 p.
4. Blank A., O’Malley M.K., Francisco G.E., Contreras-Vidal G.L. A Pre-Clinical Framework for Neural Control of a Therapeutic Upper-Limb Exoskeleton. San Diego, CA: IEEE, 2013, pp. 1159–1162. DOI: 10.1109/NER.2013.6696144
5. Brackbill E.A., Mao Y., Agrawal S.K., Annapragada M., Dubey V.N. Dynamics and Control of a 4-dof Wearable Cable-Driven Upper Arm Exoskeleton. Kobe: IEEE, 2009, pp. 2300-2305. DOI: 10.1109/ROBOT.2009.5152545
6. Carignan C., Liszka M., Roderick S. Design of an Arm Exoskeleton with Scapula Motion for Shoulder Rehabilitation. Seattle, WA: IEEE, 2005, pp. 524–531. DOI: 10.1109/ICAR.2005.1507459
7. Carignan C., Tang J., Roderick S., Naylor M. A Configuration-Space Approach to Controlling a Rehabilitation Arm Exoskeleton. Noordwijk: IEEE, 2007, pp. 179–187. DOI: 10.1109/ICORR.2007.4428425
8. Culmer P.R., Jackson A.E., Makower S.G., Cozens J.A., Levesley M.C., Mon-Williams M. et al. A Novel Robotic System for Quantifying Arm Kinematics and Kinetics: Description and Evaluation in Therapist-Assisted Passive Arm Movements Post-Stroke. J. Neurosci. Methods, 2011, vol. 197, pp. 259–269. DOI: 10.1016/j.jneumeth.2011.03.004
9. DeJong G., Smout J., Horn D., Gassaway J., Maulden A. Timing of Initiation of Rehabilitation After Stroke. Arch. Phys. Med. Rehabil., 2015, vol. 86, pp. 34–40.
10. Ellis M.D., Drogos J., Carmona C., Keller T., Dewald J.P. Neck Rotation Modulates Flexion Synergy Torques, Indicating an Ipsilateral Reticulospinal Source for Impairment in Stroke. J. Neurophysiol, 2012, vol. 108, pp. 3096–3104. DOI: 10.1152/jn.01030.2011
11. Ellis M.D., Sukal T., DeMott T., Dewald J.P. Augmenting Clinical Evaluation of Hemiparetic Arm Movement with a Laboratory-Based Quantitative Measurement of Kinematics as a Function of Limb Loading. Neurorehabil. Neural Repair, 2008, vol. 22, pp. 321–329. DOI: 10.1177/1545968307313509
12. Fink M., Prada C., Wu F., Cassereau D. Self-Focusing with Time-Reversal Mirror in Inhomogeneous Media. Proc. IEEE Ultrason. Symp., 1989, pp. 681–686. DOI: 10.1109/ULTSYM.1989.67072
13. French A., Pehlivan U., O’Malley K. Current Trends in Robot-Assisted Upper-Limb Stroke Rehabilitation: Promoting Patient Engagement in Therapy. Curr Phys Med Rehabil Rep, 2014, vol. 2, pp. 184–195. DOI: 10.1007/s40141-014-0056-z
14. Galinski D., Sapin J., Dehez B. Optimal Design of an Alignment-Free Two-Dof Rehabilitation Robot for the Shoulder Complex. 2013 IEEE International Conference on Rehabilitation Robotics (ICORR) (IEEE), 2013, pp. 1–7. DOI: 10.1109/ICORR.2013.6650502
15. Klamroth-Marganska V., Blanco J., Campen K., Curt A., Dietz V., Ettlin T. et al. Three-Dimensional, Task-Specific Robot Therapy of the Arm After Stroke: a Multicentre, Parallel Group Randomised Trial. Lancet Neurol, 2014, vol. 13, pp. 159–166. DOI: 10.1016/S1474-4422(13)70305-3
16. Kwakkel G., Kollen B., Lindeman E. Understanding the Pattern of Functional Recovery after Stroke: Facts and Theories. Restor. Neurol. Neurosci., 2004, vol. 22, pp. 281–299.
17. Namdari S., Horneff J., Baldwin K., Keenan M. Muscle Releases to Improve Passive Motion and Relieve Pain in Patients with Spastic Hemiplegia and Elbow Flexion Contractures. J Shoulder Elbow Surg, 2012, vol. 21, pp. 1357–1362. DOI: 10.1016/j.jse.2011.09.029
18. Ramachandran V.S., Rogers-Ramachandran D., Cobb S. Touching the Phantom Limb. Nature, 1995, vol. 377, pp. 489–490. DOI: 10.1038/377489a0
19. Regenbrecht H.T., Franz E.A., McGregor G., Dixon B.G., Hoermann S. Be+yond the Looking Glass: Fooling the Brain with the Augmented Mirror Box. Presence, 2011, vol. 20, pp. 559–576. DOI: 10.1162/PRES_a_00082
20. Roby-Brami A., Jacobs S., Bennis N., Levin M.F. Hand Orientation for Grasping and Arm Joint Rotation Patterns in Healthy Subjects and Hemiparetic Stroke Patients. Brain Res, 2003, vol. 969, pp. 217–229. DOI: 10.1016/S0006-8993(03)02334-5
21. Salter R.B., Simmonds D.F., Malcolm B.W., Rumble E.J., MacMichael D., Clements N.D. The Biological Effect of Continuous Passive Motion on the Healing of Full-Thickness Defects in Articular Cartilage. An Experimental Investigation in the Rabbit. J Bone Joint Surg Am, 1980, vol. 62, pp. 1232–1251. DOI: 10.2106/00004623-198062080-00002
22. Shawn W.O., Giori J. Continuous Passive Motion (CPM): Theory and Principles of Clinical Application. J Rehabil Res Dev, 2000, vol. 37, pp. 179–188.
23. Song Z., Guo S., Pang M., Zhang S., Xiao N., Gao B., et al. Implementation of Resistance Training Using an Upper-Limb Exoskeleton Rehabilitation Device for Elbow Joint. J. Med. Biol. Eng, 2014, vol. 34, pp. 188–196. DOI: 10.5405/jmbe.1337
24. Sukal-Moulton T., Krosschell K.J., Gaebler-Spira D.J., Dewald J.P. Motor Impairment Factors Related to Brain Injury Timing in Early Hemiparesis. Part I: Expression of Upper-Extremity Weakness. Neurorehabil Neural Repair, 2014, vol. 28, pp. 13–23. DOI: 10.1177/1545968313500564
25. Ver C., Hofgart G., Menyhart L., Kardos L., Csiba L. Ankle-Foot Continuous Passive Motion Device for Mobilization of Acute Stroke Patients. OJTR, 2015, vol. 3, pp. 11–40. DOI: 10.4236/ojtr.2015.32004
26. Volpe B.T., Lynch D., Rykman-Berland A., Ferraro M., Galgano M., Hogan N. et al. Intensive Sensorimotor Arm Training Mediated by Therapist or Robot Improves Hemiparesis in Patients with Chronic Stroke. Neurorehabil. Neural Repair, 2008, vol. 22, pp. 305–310. DOI: 10.1177/1545968307311102
27. Zhang L.Q., Park H.S., Ren Y. Developing an Intelligent Robotic Arm for Stroke Rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics (IEEE), 2007, pp. 984–993. DOI: 10.1109/ICORR.2007.4428543

References on translit

1. Ball S.J, Brown I., Scott S. Medarm: A Rehabilitation Robot with 5dof at the Shoulder Complex. Zurich: IEEE, 1–6, 2007.
2. Beer R.F., Dewald J.P., Dawson M.L., Rymer W.Z. Target-Dependent Differences Between Free and Constrained Arm Movements in Chronic Hemiparesis. Exp. Brain Res, 2004, vol. 156, pp. 458–470. DOI: 10.1007/s00221-003-1807-8
3. Bernstein N. The Coordination and Regulation of Movement. London: Pergamon Press, 1967, 196 p.
4. Blank A., O’Malley M.K., Francisco G.E., Contreras-Vidal G.L. A Pre-Clinical Framework for Neural Control of a Therapeutic Upper-Limb Exoskeleton. San Diego, CA: IEEE, 2013, pp. 1159–1162. DOI: 10.1109/NER.2013.6696144
5. Brackbill E.A., Mao Y., Agrawal S.K., Annapragada M., Dubey V.N. Dynamics and Control of a 4-dof Wearable Cable-Driven Upper Arm Exoskeleton. Kobe: IEEE, 2009, pp. 2300-2305. DOI: 10.1109/ROBOT.2009.5152545
6. Carignan C., Liszka M., Roderick S. Design of an Arm Exoskeleton with Scapula Motion for Shoulder Rehabilitation. Seattle, WA: IEEE, 2005, pp. 524–531. DOI: 10.1109/ICAR.2005.1507459
7. Carignan C., Tang J., Roderick S., Naylor M. A Configuration-Space Approach to Controlling a Rehabilitation Arm Exoskeleton. Noordwijk: IEEE, 2007, pp. 179–187. DOI: 10.1109/ICORR.2007.4428425
8. Culmer P.R., Jackson A.E., Makower S.G., Cozens J.A., Levesley M.C., Mon-Williams M. et al. A Novel Robotic System for Quantifying Arm Kinematics and Kinetics: Description and Evaluation in Therapist-Assisted Passive Arm Movements Post-Stroke. J. Neurosci. Methods, 2011, vol. 197, pp. 259–269. DOI: 10.1016/j.jneumeth.2011.03.004
9. DeJong G., Smout J., Horn D., Gassaway J., Maulden A. Timing of Initiation of Rehabilitation After Stroke. Arch. Phys. Med. Rehabil., 2015, vol. 86, pp. 34–40.
10. Ellis M.D., Drogos J., Carmona C., Keller T., Dewald J.P. Neck Rotation Modulates Flexion Synergy Torques, Indicating an Ipsilateral Reticulospinal Source for Impairment in Stroke. J. Neurophysiol, 2012, vol. 108, pp. 3096–3104. DOI: 10.1152/jn.01030.2011
11. Ellis M.D., Sukal T., DeMott T., Dewald J.P. Augmenting Clinical Evaluation of Hemiparetic Arm Movement with a Laboratory-Based Quantitative Measurement of Kinematics as a Function of Limb Loading. Neurorehabil. Neural Repair, 2008, vol. 22, pp. 321–329. DOI: 10.1177/1545968307313509
12. Fink M., Prada C., Wu F., Cassereau D. Self-Focusing with Time-Reversal Mirror in Inhomogeneous Media. Proc. IEEE Ultrason. Symp., 1989, pp. 681–686. DOI: 10.1109/ULTSYM.1989.67072
13. French A., Pehlivan U., O’Malley K. Current Trends in Robot-Assisted Upper-Limb Stroke Rehabilitation: Promoting Patient Engagement in Therapy. Curr Phys Med Rehabil Rep, 2014, vol. 2, pp. 184–195. DOI: 10.1007/s40141-014-0056-z
14. Galinski D., Sapin J., Dehez B. Optimal Design of an Alignment-Free Two-Dof Rehabilitation Robot for the Shoulder Complex. 2013 IEEE International Conference on Rehabilitation Robotics (ICORR) (IEEE), 2013, pp. 1–7. DOI: 10.1109/ICORR.2013.6650502
15. Klamroth-Marganska V., Blanco J., Campen K., Curt A., Dietz V., Ettlin T. et al. Three-Dimensional, Task-Specific Robot Therapy of the Arm After Stroke: a Multicentre, Parallel Group Randomised Trial. Lancet Neurol, 2014, vol. 13, pp. 159–166. DOI: 10.1016/S1474-4422(13)70305-3
16. Kwakkel G., Kollen B., Lindeman E. Understanding the Pattern of Functional Recovery after Stroke: Facts and Theories. Restor. Neurol. Neurosci., 2004, vol. 22, pp. 281–299.
17. Namdari S., Horneff J., Baldwin K., Keenan M. Muscle Releases to Improve Passive Motion and Relieve Pain in Patients with Spastic Hemiplegia and Elbow Flexion Contractures. J Shoulder Elbow Surg, 2012, vol. 21, pp. 1357–1362. DOI: 10.1016/j.jse.2011.09.029
18. Ramachandran V.S., Rogers-Ramachandran D., Cobb S. Touching the Phantom Limb. Nature, 1995, vol. 377, pp. 489–490. DOI: 10.1038/377489a0
19. Regenbrecht H.T., Franz E.A., McGregor G., Dixon B.G., Hoermann S. Be+yond the Looking Glass: Fooling the Brain with the Augmented Mirror Box. Presence, 2011, vol. 20, pp. 559–576. DOI: 10.1162/PRES_a_00082
20. Roby-Brami A., Jacobs S., Bennis N., Levin M.F. Hand Orientation for Grasping and Arm Joint Rotation Patterns in Healthy Subjects and Hemiparetic Stroke Patients. Brain Res, 2003, vol. 969, pp. 217–229. DOI: 10.1016/S0006-8993(03)02334-5
21. Salter R.B., Simmonds D.F., Malcolm B.W., Rumble E.J., MacMichael D., Clements N.D. The Biological Effect of Continuous Passive Motion on the Healing of Full-Thickness Defects in Articular Cartilage. An Experimental Investigation in the Rabbit. J Bone Joint Surg Am, 1980, vol. 62, pp. 1232–1251. DOI: 10.2106/00004623-198062080-00002
22. Shawn W.O., Giori J. Continuous Passive Motion (CPM): Theory and Principles of Clinical Application. J Rehabil Res Dev, 2000, vol. 37, pp. 179–188.
23. Song Z., Guo S., Pang M., Zhang S., Xiao N., Gao B., et al. Implementation of Resistance Training Using an Upper-Limb Exoskeleton Rehabilitation Device for Elbow Joint. J. Med. Biol. Eng, 2014, vol. 34, pp. 188–196. DOI: 10.5405/jmbe.1337
24. Sukal-Moulton T., Krosschell K.J., Gaebler-Spira D.J., Dewald J.P. Motor Impairment Factors Related to Brain Injury Timing in Early Hemiparesis. Part I: Expression of Upper-Extremity Weakness. Neurorehabil Neural Repair, 2014, vol. 28, pp. 13–23. DOI: 10.1177/1545968313500564
25. Ver C., Hofgart G., Menyhart L., Kardos L., Csiba L. Ankle-Foot Continuous Passive Motion Device for Mobilization of Acute Stroke Patients. OJTR, 2015, vol. 3, pp. 11–40. DOI: 10.4236/ojtr.2015.32004
26. Volpe B.T., Lynch D., Rykman-Berland A., Ferraro M., Galgano M., Hogan N. et al. Intensive Sensorimotor Arm Training Mediated by Therapist or Robot Improves Hemiparesis in Patients with Chronic Stroke. Neurorehabil. Neural Repair, 2008, vol. 22, pp. 305–310. DOI: 10.1177/1545968307311102
27. Zhang L.Q., Park H.S., Ren Y. Developing an Intelligent Robotic Arm for Stroke Rehabilitation. IEEE 10th International Conference on Rehabilitation Robotics (IEEE), 2007, pp. 984–993. DOI: 10.1109/ICORR.2007.4428543
Published
2018-09-01
How to Cite
Petrov, A., Smirnov, A., Epishev, V., & Shevtsov, A. (2018). “MOVEMENT-MIRRORING” ARM EXOSKELETON IN REHABILITATION. Human. Sport. Medicine, 18(3), 113-119. https://doi.org/10.14529/hsm180311
Section
Rehabilitation and sports medicine

Most read articles by the same author(s)

1 2 > >>